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Abstract

Empirical analyses of income and wealth inequality often face the difficulty that the observa-
tions are heterogeneous, heavy-tailed or correlated in some unknown fashion. This paper focuses
on applications of the recently developed computationally simple approach t-statistic based ro-
bust inference approach in the analysis of inequality. Two regions can be compared in terms of
inequality as follows: the data in the samples relating to the two regions are partitioned into
small numbers of groups, and the chosen inequality index/measure is estimated for each group.
Inference is then based on standard t-tests with the resulting group estimators. The t-statistic
based approach results in valid inference, as long as the group estimators of the inequality index
are asymptotically independent, unbiased, and Gaussian, possibly with different variances. These
conditions are typically satisfied in empirical applications. The presented method complements
and compare favorably with other approaches to inference on inequality. We apply this approach
to examine income inequality across Russian regions. Our analysis reveals that income distribu-
tion in Russia is notably heavy-tailed, with most regions exhibiting higher levels of inequality
compared to Moscow. Robust comparisons of this type offer a good foundation for evaluating
and shaping regional policies aimed at addressing income disparities.

Keywords: Income inequality, inequality indices, robust inference, heavy-tailedness, Russian
economy.

1 Introduction

Many studies have found that income and wealth distributions (denoted by 𝑋 > 0) are heavy-
tailed and follow power laws.

0CONTACT: Rustam Ibragimov; irustam@imperial.ac.uk; Imperial College Business School, South Kensington
Campus, London SW7 2AZ, United Kingdom
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𝑃 (𝑋 > 𝑥) ∼ 𝐶𝑥−𝜁 , 𝐶 > 0, (1)

for large 𝑥 > 0, with the tail index 𝜁 > 0 (see, among others, the discussion and reviews in Piketty and
Saez, 2003, Atkinson, 2008, Gabaix, 2009, Gabaix et al., 2016, Toda and Wang, 2021, and references
therein).1

The tail index parameters (𝜁) of power law distributions (1) characterize the heaviness (the rate
of decay) of their tails and thus govern the likelihood of observing outliers and extreme values of the
random variables (r.v.s). Smaller values of 𝜁 correspond to more pronounced heavy-tailedness in the
distribution, and vice versa. Indeed, The values of 𝜁 in power law income or wealth distributions (1)
have been used as a measure of upper tail inequality (that is, inequality among the rich), with smaller
values of the tail index corresponding to greater inequality in the upper tail.2 Importantly, the tail
index parameter governs the existence of moments of the r.v. 𝑋 > 0 with power law distribution
(1), with the moment 𝐸𝑋𝑝 of order 𝑝 > 0 of 𝑋 being finite if and only if 𝜁 > 𝑝. In particular, the
second moment 𝐸𝑋2 of the r.v. 𝑋 is finite and its variance Var(𝑋) is defined if and only if 𝜁 > 2;

and the first moment - the mean 𝐸𝑋 - of 𝑋 is finite if and only if 𝜁 > 1. Empirical estimates suggest
𝜁 ∈ (1.5, 3) for income distributions, and 𝜁 ≈ 1.5 for wealth distributions. The implication is that the
population variance is infinite for wealth and may be infinite for income.

Applicability of commonly used approaches to inference on inequality based on asymptotic nor-
mality of estimators of inequality measures becomes problematic under heavy-tailedness, heterogene-
ity, and correlation in the data. For example, estimators of measures of inequality such as the Gini
coefficient converge to non-Gaussian limits given by stable r.v.’s under sufficiently pronounced heavy-
tailedness, with infinite second moments and variances (see Fontanari et al., 2018, and the discussion
in Appendix B).3 Even when normal convergence holds for an estimator of an inequality index,
asymptotic methods based on it often have poor finite sample properties in the presence of extreme
values, i.e., when the data are heavy-tailed.4 Similar problems also plague bootstrap methods (see

1As is well-known, heavy-tailedness and power law distributions are also exhibited by many other key variables
in economics and finance, including financial returns, foreign exchange rates, insurance risks and losses from natural
disasters, to name a few (see, among others, the reviews in Embrechts et al., 1997, Gabaix, 2009, Ibragimov et al.,
2015, McNeil et al., 2015, and references therein).

2This may be motivated by the fact that in the case of Pareto distributions with 𝜁 > 1 for income or wealth, where
(1) holds exactly for all values 𝑥 greater than a certain threshold 𝑥𝑚, the Gini coefficient of inequality over the whole
income/wealth distribution is equal to 1/(2𝜁−1) and is thus decreasing in 𝜁 (see also the discussion in Atkinson, 2008,
Gabaix et al., 2016, that focuses on the analysis and estimation of the top income inequality measure 𝜂 = 1/𝜁, Blanchet
et al., 2018, and Ibragimov and Ibragimov, 2018).

3As is well-known, the finiteness of variances for the r.v.s is crucial for applicability of standard statistical and econo-
metric methods, including regression and least squares. Similarly, the problem of potentially infinite fourth moments of
economic and financial variables and time series needs to be taken into account in applications of autocorrelation-based
methods and inference procedures (see, among others, the discussion in Granger and Orr, 1972, Embrechts et al., 1997,
Cont, 2001, Ch. 1 in Ibragimov et al., 2015, and references therein.)

4More generally, poor finite sample properties are often observed for asymptotic methods based on normal con-
vergence of estimators and consistent estimation of their limiting variances under heterogeneity and dependence in
observations; for example, for inference approaches based on heteroskedasticity and autocorrelation consistent - HAC
- and clustered standard errors, especially with data with pronounced autocorrelation, dependence and heterogeneity.

2



Cowell and Flachaire, 2007, Davidson and Flachaire, 2007). Bootstrap methods are also known to fail
in heavy-tailed infinite variance settings (see the discussion in Section 5 in Davidson and Flachaire,
2007, and references therein).

The difficulties in inference related to inequality are discussed in detail in Dufour et al. (2019,
2020), where the paucity of reliable methods are highlighted. Difficulties apply both to the problem
of one-sample inference based on a single estimate of an inequality index, as well as the two-sample
problem of inference on the difference between or equality of inequality indices in two populations.
The latter problem is much more challenging than the former (see also Ibragimov and Müller, 2016,
for discussion and results on robust inference on the difference between or equality of two parameters
under heterogeneity and dependence).

Dufour et al. (2019) propose permutation tests for the hypothesis of equality of an inequality
index across two populations using independent samples. These tests outperform other asymptotic
and bootstrap methods currently available (see also Canay et al., 2017, for permutation tests of
equality of two general parameters of interest under heterogeneity and clustered dependence), but
do not provide a way of drawing inferences on any specified difference (including zero) in inequality
between the populations, nor of constructing a confidence interval for the difference in the inequality
index. In this regard Dufour et al. (2020) propose Fieller-type methods for inference on the generalized
entropy (GE) class of inequality indices for any, including possibly non-zero, difference in inequality
between two populations. This approach can be used with independent samples of i.i.d. observations
with possibly unequal sizes and equal-sized samples of i.i.d. observations with arbitrary dependence
between the samples, but is computationally demanding.

This paper focuses on applications of the recently developed 𝑡−statistic approach (see Ibragimov
and Müller, 2010, 2016, and also Ch. 3 in Ibragimov et al., 2015) for robust inference on income
and wealth inequality measured using a class of inequality indices, when the data are heterogeneous,
heavy-tailed or correlated in some unknown fashion. A robust large sample test on equality or a
non-zero difference in inequality (between two regions, for example) can be conducted quite easily as
follows: the data in the two samples are partitioned into fixed numbers 𝑞𝐼 , 𝑞𝑌 ≥ 2 (e.g., 𝑞𝐼 = 𝑞𝑌 = 2, 4,

or 8) of groups, the considered inequality index is estimated for each group, and inference is based
on a standard two-sample 𝑡−test with the resulting 𝑞𝐼 , 𝑞𝑌 group estimators (see the next section).
As follows from the results in Ibragimov and Müller (2010, 2016), the above 𝑡−statistic based robust
inference approach results in valid inference under general conditions that the group estimators of
the parameter of interest, the inequality index, are asymptotically independent and Gaussian, with
possibly different variances.56

(See, among others, Andrews, 1991, den Haan and Levin, 1997, the discussion in Phillips, 2005, Ibragimov and Müller,
2010, 2016, Canay et al., 2017, Esarey and Menger, 2019, and references therein).

5Asymptotic validity of 𝑡−statistic robust inference approach in Ibragimov and Müller (2010, 2016) continues to
hold in the case where group estimators of the parameter of interest weakly converge, at an arbitrary rate, to scale
mixtures of normals, e.g., to symmetric stable distributions as in heavy-tailed infinite variance settings.

6As discussed in Ibragimov and Müller (2010) and Ch. 3 in Ibragimov et al. (2015) (see also Section 2), asymptotic
Gaussianity of group estimators of the parameters of interest typically follows from the same reasoning and holds
under the same conditions as the asymptotic Gaussianity of their full-sample estimators. Asymptotic normality holds
for estimators of Theil and Gini indices in the case of power law income distributions with the tail index 𝜁 > 2 and
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The 𝑡−statistic approach to robust inference on inequality complements and compares favor-
ably with other inference methods available in the literature, including computationally expensive
bootstrap procedures and permutation-based inference methods. Importantly, the approach can be
used for constructing confidence intervals for any possibly non-zero difference in inequality between
populations as measured by the chosen index, notwithstanding the problems of heterogeneity, heavy-
tailedness, and possible dependence in the data.

In comparison to other methods in the literature including those in Dufour et al. (2019, 2020),
the approach to inference on inequality that is proposed in this paper has a wider range of applica-
bility. It can be used when observations on income or wealth levels in each of the samples considered
are dependent among themselves - for example, due to spatial or clustered dependence (see Conley,
1999, and Bhattacharya, 2007, for a review of settings and methods of inference under spatial and
clustered dependence, including complex stratified and clustered household surveys), common shocks
(see Andrews, 2005, and Hwang, 2021, for a review of and inference using data with common shock
dependence), or, in the case of time series or panel data on income or wealth levels, due to autocorre-
lation and dependence in observations over time. Further, for inference on the difference in inequality
between two populations using two samples of possibly dependent observations, the 𝑡−statistic infer-
ence approach may be used under arbitrary dependence between the samples as well as with unequal
sample sizes.

The paper is organized as follows. Section 2 describes the 𝑡−statistic approach to robust inference
on inequality and discusses the conditions for its validity. Section 3 provides numerical results on the
finite sample performance of this approach and its comparison with other inference methods in the lit-
erature. In particular, Section 3.2 provides the results on finite sample performance of 𝑡−statistic and
other approaches in the case of testing equality of inequality between two populations and inference
on the difference in inequality between them, with the main focus on the important and empirically
relevant case of samples with different (income or wealth) distributions, and the case of samples with
identical distributions discussed in Appendix C. Section 4 presents empirical applications of the ro-
bust 𝑡−statistic approach in the analysis of income inequality in Russia and comparisons of inequality
across Russian regions. Section 5 offers some concluding remarks and suggestions for future research.
Appendix A provides tables on the numerical and empirical results in the paper. Appendix B provides
a review of the definitions and asymptotic properties of Gini and Theil inequality indices dealt with
in the paper and a discussion of the asymptotics for their sample analogs. Appendix C discusses
finite-sample performance of the 𝑡−statistic and other inference approaches in the illustrative case of
samples with identical (income or wealth) distributions. For illustrative purposes, online Appendix D
discusses 𝑡−statistic inference approach and its implementation for the one-sample case.

finite second moments (see the discussion in Appendix B).
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2 Methodology: Robust t-statistic approach to inference on
inequality measures

Our focus is on inference on inequality as measured using a set of commonly employed inequality
indices, applying the computationally economic t-statistic based approach to robust inference recently
developed in Ibragimov and Müller (2010, 2016). Ibragimov and Müller (2010) provides an approach to
robust inference on an arbitrary single parameter of interest; Ibragimov and Müller (2016) provides an
approach to robust testing of equality as well as to inference on the difference between two populations,
in terms of an arbitrary parameter of interest.7

We focus on the important empirically relevant and difficult (see the discussion in the introduction)
problem of two-sample inference on income or wealth inequality. 8

In the two-sample problem, we consider inference on the difference 𝑑 = ℒ𝐼−ℒ𝑌 between the values
of the inequality index ℒ in two populations using large samples 𝐼1, 𝐼2, ..., 𝐼𝑁𝐼

and 𝑌1, 𝑌2, ..., 𝑌𝑁𝑌
on

income or wealth levels in the populations. With two independent samples, inference is based on the
two-sample 𝑡−statistic in group estimators of the inequality index ℒ for the two samples.

2.1 Two independent samples: Inference using the two-sample 𝑡−statistic
in group estimators

Throughout the paper, we denote by 𝑇𝑘 the r.v. that has a Student-𝑡 distribution with 𝑘 ≥ 1

degrees of freedom. Further, for 𝑞 ≥ 2 and 0 < 𝛼 < 1, we use 𝑐𝑣𝑞,𝛼 to denote the (1− 𝛼/2)−quantile
of the Student-𝑡 distribution with 𝑞 − 1 degrees of freedom: 𝑃 (|𝑇𝑞−1| > 𝑡𝛼)= 𝛼.

Following the 𝑡−statistic approach to robust inference on two parameters in Ibragimov and Müller
(2016), each of two independent samples (𝐼1, 𝐼2, ..., 𝐼𝑁𝐼

and 𝑌1, 𝑌2, ..., 𝑌𝑁𝑌
) is partitioned into fixed

numbers 𝑞𝐼 , 𝑞𝑌 ≥ 2 (e.g., 𝑞𝐼 , 𝑞𝑌 = 2, 4, 8) groups, respectively, and the income inequality index ℒ
is estimated using the data for each of the groups in the two samples. This thus results in 𝑞𝐼 + 𝑞𝑌

group empirical income inequality measures ̂︀ℒ𝐼
1, ..., ̂︀ℒ𝐼

𝑞𝐼
, and ̂︀ℒ𝑌

1 , ..., ̂︀ℒ𝑌
𝑞𝑌
. The robust test of the null

hypothesis 𝐻0 : ℒ𝐼 − ℒ𝑌 = 𝑑0 (when 𝑑0 = 0, the test is for the hypothesis 𝐻0 : ℒ𝐼 = ℒ𝑌 ) against
the two-sided alternative 𝐻𝑎 : ℒ𝐼 − ℒ𝑌 ̸= 𝑑0 (resp., with 𝑑0 = 0, against the two-sample alternative
𝐻𝑎 : ℒ1 ̸= ℒ2) is based on the usual two-sample 𝑡−statistic 𝑡ℒ in the 𝑞𝐼+𝑞𝑌 group inequality estimateŝ︀ℒ𝐼

𝑗 , ̂︀ℒ𝑌
𝑘 , 𝑗 = 1, ..., 𝑞𝐼 , 𝑘 = 1, ..., 𝑞𝑌 :

𝑡ℒ =
̂︀ℒ𝐼 − ̂︀ℒ𝑌 − 𝑑0√︁
𝑠2̂︀ℒ𝐼

/𝑞𝐼 + 𝑠2̂︀ℒ𝑌
/𝑞𝑌

(2)

7We refer to, among others, Section 13.F in Cowell and Flachaire (2007), Davidson and Flachaire (2007), Section
13. F in Marshall et al. (2011), Ibragimov and Ibragimov (2018), Dufour et al. (2019) and Dufour et al. (2020), and
Appendix B for definitions of the most widely used inequality measures, including Gini, Generalized Entropy, and Theil
indices, and their values for different income distributions, including empirically relevant heavy-tailed Pareto, double
Pareto, and Singh-Maddala distributions that follow power laws (1) (see the next section).

8Implementation of the 𝑡−statistic approach in the illustrative one-sample case is discussed in online Appendix D
and in Ibragimov et al., 2013).
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with ̂︀ℒ𝐼 =
1

𝑞𝐼

𝑞𝐼∑︁
𝑗=1

̂︀ℒ𝐼
𝑗 ,

̂︀ℒ𝑌 =
1

𝑞𝑌

𝑞𝑌∑︁
𝑘=1

̂︀ℒ𝑌
𝑘 ,

𝑠2̂︀ℒ𝐼 =
1

𝑞𝐼 − 1

𝑞𝐼∑︁
𝑗=1

(︁ ̂︀ℒ𝐼
𝑗 − ̂︀ℒ𝐼

)︁2

, 𝑠2̂︀ℒ𝑌 =
1

𝑞𝑌 − 1

𝑞𝑌∑︁
𝑘=1

(︁ ̂︀ℒ𝑌
𝑘 − ̂︀ℒ𝑌

)︁2

.

For the numbers of groups 𝑞𝐼 , 𝑞𝑌 ≤ 14 the above null hypothesis 𝐻0 : ℒ𝐼 − ℒ𝑌 = 𝑑0 is rejected
in favor of the alternative 𝐻𝑎 : ℒ𝐼 − ℒ𝑌 ̸= 𝑑0 at level 𝛼 ∈ {0.001, 0.002, ..., 0.099, 0.10} (which
includes the usual significance levels 𝛼 = 0.01, 0.05 and 0.1 if the absolute value |𝑡ℒ| of the two-
sample 𝑡−statistic in group inequality estimators ̂︀ℒ𝐼

𝑗 , ̂︀ℒ𝑌
𝑘 , 𝑗 = 1, ..., 𝑞𝐼 , 𝑘 = 1, ..., 𝑞𝑌 , exceeds the

(1 − 𝛼/2)−quantile of the standard Student-𝑡 distribution with 𝑞 − 1 degrees of freedom, where
𝑞 = min(𝑞𝐼 , 𝑞𝑌 ) : |𝑡ℒ| > 𝑐𝑣𝑞,𝛼 = 𝑐𝑣min(𝑞𝐼 ,𝑞𝑌 ),𝛼.

9 One-sided tests are conducted in a similar way (see also
Appendix D for illustrations in the one-sample case).

For 𝛼 = 0.01, 0.05, 0.1, with the number of groups 𝑞𝐼 , 𝑞𝑌 ≤ 14, denoting min(𝑞𝐼 , 𝑞𝑌 ) = 𝑞, a
confidence interval for the difference 𝑑0 = ℒ𝐼 − ℒ𝑌 between the values of the inequality index ℒ in
two populations with asymptotic coverage of at least 1− 𝛼 may be constructed readily; for example,
the 95% confidence interval for ℒ is given by ̂︀ℒ𝐼 − ̂︀ℒ𝑌 ± 𝑐𝑣𝑞,0.05

√︁
𝑠2̂︀ℒ𝐼

/𝑞𝐼 + 𝑠2̂︀ℒ𝑌
/𝑞𝑌 , where 𝑐𝑣𝑞,0.05 is the

0.975-quantile of the Student-t distribution with min(𝑞𝐼 , 𝑞𝑌 )−1 degrees of freedom: 𝑃 (
⃒⃒
𝑇min(𝑞𝐼 ,𝑞𝑌 )−1

⃒⃒
>

𝑐𝑣𝑞,0.05)=0.05.
As follows from Ibragimov and Müller (2016), the two-sample 𝑡−statistic approach is asymptoti-

cally valid under the assumption that the group empirical income inequality measures ̂︀ℒ𝐼
𝑗 , 𝑗 = 1, ..., 𝑞𝐼 ,̂︀ℒ𝑌

𝑘 , 𝑘 = 1, ..., 𝑞𝑌 , are asymptotically independent, unbiased and Gaussian, even if of different vari-
ances.

More generally, asymptotic validity of t-statistic based inference also holds under convergence
of the group estimators to conditionally normal r.v.s which are possibly unconditionally dependent
through their second moments or have a common shock-type dependence (see Andrews, 2005, for
inference methods under common shock dependence structures, and Hwang, 2021, for applications
of 𝑡−statistic robust inference approach in such settings).10 This implies that the approach can be
applied to inference on ℒ in the presence of extremes and outliers in observations generated by
heavy-tailedness with infinite variances, as well as dependence structures that include models with
multiplicative common shocks (see Ibragimov, 2007, 2009). The inference approach does not require
the estimation of limiting variances of estimators of interest, in contrast to inference methods based
on consistent (e.g., HAC or clustered) standard errors.11

9As follows from the analysis in Ibragimov and Müller (2016), these tests may also be used for all 𝑞𝐼 , 𝑞𝑌 ≤ 50 if
𝛼 ∈ {0.001, 0.002, ..., 0.083}, e.g., for the usual critical values 𝛼 = 0.01, 0.05.

10Justification of asymptotic validity of the robust 𝑡−statistic inference approach in Ibragimov and Müller (2010) is
based on a small sample result in Bakirov and Székely (2006) that implies validity of the standard 𝑡−test on the mean
under independent heterogeneous normal observations. Justification of asymptotic validity of the approach in inference
on equality of two parameters in Ibragimov and Müller (2016) is based on the analogues of the above small sample
result for two-sample 𝑡−tests and Behrens-Fisher problem obtained therein.

11The numerical analysis in Ibragimov and Müller (2010, 2016) and Section 3 in Ibragimov et al. (2015) indicates
favorable finite sample performance of the approach in inference on models with time series, panel, clustered and
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The conditions for asymptotic validity of 𝑡−statistic robust inference approach are discussed in
further detail in Section 2.3 below and in Appendix D.

2.2 Possibly dependent samples: Inference using one-sample 𝑡−statistic in
differences of group estimators

Let us now consider the problem of inference on the difference 𝑑 = ℒ𝐼 − ℒ𝑌 between the two
populations using income or wealth samples 𝐼1, 𝐼2, ..., 𝐼𝑁𝐼

and 𝑌1, 𝑌2, ..., 𝑌𝑁𝑌
of possibly unequal sizes

𝑁𝐼 , 𝑁𝑌 , that may exhibit an arbitrary dependence between them. Suppose that the samples are divided
into an equal number of groups 𝑞𝐼 = 𝑞𝑌 = 𝑞 ≥ 2 (e.g., 𝑞𝐼 , 𝑞𝑌 = 2, 4 or 8), and estimates of the
inequality index ℒ are calculated using the data for each of the 2𝑞 groups. This produces group level
income inequality estimates ̂︀ℒ𝐼

1, ..., ̂︀ℒ𝐼
𝑞 , and ̂︀ℒ𝑌

1 , ..., ̂︀ℒ𝑌
𝑞 .

As follows from Ibragimov and Müller (2010) (see also Appendix D on the one-sample inference),
the robust test of the null hypothesis 𝐻0 : ℒ𝐼 − ℒ𝑌 = 𝑑0 (with 𝑑0 = 0, the test is of 𝐻0 : ℒ𝐼 = ℒ𝑌 )
against the two-sided alternative 𝐻𝑎 : ℒ𝐼 − ℒ𝑌 ̸= 𝑑0 may be based on the one-sample 𝑡−statistic ˜̃𝑡ℒ

in the 𝑞 differences ̂︀ℒ𝐼
𝑗 − ̂︀ℒ𝑌

𝑗 , 𝑗 = 1, ..., 𝑞, of the group empirical inequality estimates:

˜̃𝑡ℒ =
√
𝑞
̂︀ℒ𝐼 − ̂︀ℒ𝑌 − 𝑑0

𝑠 ̂︀ℒ𝐼−𝑌

(3)

with ̂︀ℒ𝐼 =
1

𝑞

𝑞∑︁
𝑗=1

̂︀ℒ𝐼
𝑗 ,

̂︀ℒ𝑌 =
1

𝑞

𝑞∑︁
𝑗=1

̂︀ℒ𝑌
𝑗 ,

𝑠2̂︀ℒ𝐼−𝑌 =
1

𝑞 − 1

𝑞∑︁
𝑗=1

(︁
( ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 )− ( ̂︀ℒ𝐼 − ̂︀ℒ𝑌 )

)︁2

.

As in the case of 𝑡−statistic based inference on one parameter in Ibragimov and Müller (2010) and
Appendix D, for any 𝛼 ≤ 0.083 (any 𝛼 ≤ 0.1 for 2 ≤ 𝑞 ≤ 14), the null hypothesis 𝐻0 : ℒ𝐼 − ℒ𝑌 = 𝑑0

is rejected in favor of the two-sided alternative 𝐻𝑎 : ℒ𝐼 −ℒ𝑌 ̸= 𝑑0 at level 𝛼 if the absolute value |˜̃𝑡ℒ|
of the 𝑡−statistic in the differences ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 , 𝑗 = 1, ..., 𝑞 of group inequality estimates exceeds the

(1−𝛼/2)−quantile of the standard Student-𝑡 distribution with 𝑞− 1 degrees of freedom: |˜̃𝑡ℒ| > 𝑐𝑣𝑞,𝛼.

Further, as in the case of 𝑡−statistic inference on a single inequality measure in Appendix D, the
𝑝−values of the above tests can be calculated in the case of an arbitrary number 𝑞 = 𝑞𝐼 = 𝑞𝑌 of
groups thus enabling conducting robust tests of an arbitrary level.

For all 𝛼 ≤ 0.083 (and all 𝛼 ≤ 0.1 for 2 ≤ 𝑞 ≤ 14), a confidence interval for the difference
𝑑0 = ℒ𝐼 − ℒ𝑌 between the values of the inequality index ℒ in two populations with asymptotic
coverage of at least 1− 𝛼 may be constructed as ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 ± 𝑐𝑣𝑞,𝛼𝑠 ̂︀ℒ𝐼−𝑌 .

As discussed in Ibragimov and Müller (2010), Section 2.1 and Appendix D, the 𝑡−statistic based
approach to robust inference based on (3) is asymptotically valid under the assumption that the the

spatially correlated data. See also Esarey and Menger (2019) for software (STATA and R) implementations and detailed
numerical analysis of finite sample performances of different inference procedures including 𝑡−statistic and related
approaches, under small number of clusters of dependent data.
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bivariate vectors of group empirical inequality estimates ( ̂︀ℒ𝐼
𝑗 , ̂︀ℒ𝑌

𝑗 ), 𝑗 = 1, ..., 𝑞, are asymptotically
independent across 𝑗, with components that are asymptotically unbiased and Gaussian, with possibly
different variances (across 𝑗). At the same time, for each 𝑗 = 1, ..., 𝑞, the components of the vector
of group estimators ̂︀ℒ𝐼

𝑗 and ̂︀ℒ𝑌
𝑗 can exhibit an arbitrary dependence among themselves. Indeed,

asymptotic independence of the vectors ( ̂︀ℒ𝐼
𝑗 , ̂︀ℒ𝑌

𝑗 ), 𝑗 = 1, ..., 𝑞, of group estimators implies asymptotic
independence of the differences ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 , 𝑗 = 1, ..., 𝑞, used in calculation of 𝑡−statistic (3), that is

required for asymptotic validity of the inference approach based on the 𝑡−statistic, according to the
results in Ibragimov and Müller (2010).

2.3 Asymptotic Gaussianity and asymptotic independence of group esti-
mators and the choice of groups

As in the one-sample problem in Appendix D, asymptotic Gaussianity (or convergence to stable
distributions under heavy-tailedness with infinite second moments) of group estimators of the inequal-
ity index ℒ in the two samples - the group empirical inequality estimators ℒ̂𝐼

𝑗 , ℒ̂𝑌
𝑘 - typically holds

(under the same conditions) as long as it holds for the full-sample estimators ℒ̂𝐼 , ℒ̂𝑌 of ℒ calculated
using all the observations in the two samples. In particular, asymptotic normality holds for estimators
of Theil and Gini indices, in the case of power law income distributions (1) with tail indices 𝜁 > 2

and finite second moments (see Appendix B).
As discussed in Appendix D, with reference to inference on the difference between inequality in

two regions in a country using i.i.d. data from household income surveys, groups may be formed
by partitioning each of the two region-specific random samples. Namely, given the random samples
𝐼1, 𝐼2, ..., 𝐼𝑁𝐼

, 𝑌1, 𝑌2, ..., 𝑌𝑁𝑌
of (i.i.d.) income levels, the 𝑞𝐼 , 𝑞𝑌 groups may be formed as {𝐼𝑘, (𝑖 −

1)𝑁𝐼/𝑞𝐼 < 𝑘 ≤ 𝑖𝑁𝐼/𝑞𝐼}, {𝑌𝑙, (𝑗 − 1)𝑁𝑌 /𝑞𝑌 < 𝑙 ≤ 𝑗𝑁𝑌 /𝑞𝑌 }, 𝑖 = 1, ..., 𝑞𝐼 , 𝑗 = 1, ..., 𝑞𝑌 . This is
illustrated in the empirical application in Section 4. Asymptotic unbiasedness and independence of
group inequality estimators hold due to i.i.d.ness of data in the samples.12

In applications of the two-sample 𝑡-statistic based approach, the appropriate choice of the numbers
𝑞𝐼 and 𝑞𝑌 of groups is important. The numerical results in Section 3.2 indicate that, for different heavy-
tailed distributions considered, the choice of the number of groups 𝑞𝐼 = 𝑞𝑌 = 𝑞 = 4, 8, 12, 16 leads to
attractive finite sample performance of robust two-sample tests based on 𝑡−statistics 𝑡ℒ in (2) and ˜̃𝑡ℒ

in (3).13

12Various methods for forming groups can be employed. Additionally, it would be valuable to explore random splits
or all possible splits and use inference procedures based on metrics such as the median or average of the 𝑡-statistics
calculated from the corresponding group estimates of parameters of interest. We thank an anonymous referee for
suggesting the use of random splits as the basis for groups. The use of random splitting does not affect the validity
of the asymptotic properties of the group estimators. Following a suggestion by one of the authors, Dagayev and
Stoyan (2020) recently used random sample splits in their empirical application. They constructed 𝑡-statistics for
group estimates of the parameters under analysis and based the inference on quantiles, including the median, from the
empirical distribution of the 𝑡-statistics values for the splits considered.

13These conclusions align with the numerical results presented in Ibragimov and Müller (2010), which indicate that
for many dependence and heterogeneity settings considered in the literature and typically encountered in practice (e.g.,
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More generally, and naturally, the finite sample performance of the 𝑡−statistic robust inference
approach with different numbers 𝑞𝐼 , 𝑞𝑌 of groups and the choice of the optimal values of 𝑞𝐼 , 𝑞𝑌 on
its basis depend on distributional properties of the populations considered, including the degrees of
their heavy-tailedness, and the sizes 𝑁𝐼 , 𝑁𝑌 of the samples used in inference. The simplest way to
choose the numbers of groups in the case of distributions that are not very different from each other
is to have 𝑞𝐼/𝑞𝑌 (approximately) equal to 𝑁𝐼/𝑁𝑌 so that the sizes of all the groups considered are
(approximately) the same. If the population distributions have similar tail indices, then in the case
of inference on Gini measures, 𝑞𝐼 and 𝑞𝑌 may be taken to be equal. In general, the size of the groups
in the sample from a more heavy-tailed distribution should be larger than the size of the groups
from a less heavy-tailed distribution. Thus in the case of equally sized samples, one should take the
number of groups in the more heavy-tailed sample to be less than the number of groups in the less
heavy-tailed sample.

3 Finite sample performance

In this section, we present numerical results on finite sample properties of the 𝑡−statistic approach,
as well as of the bootstrap and permutation approaches to inference on inequality indices. Results are
provided for inference on the Theil index and the Gini coefficient, as in Cowell and Flachaire (2007)
and Dufour et al. (2019). We begin by addressing the finite sample approximations to sampling
distributions of full-sample estimators in Section 3.1. In Section 3.2, we present results for the two-
sample problem of inference on the difference between two inequality indices.

As in Dufour et al. (2019), our numerical analyses are based on simulations from the Singh-
Maddala (S-M) family of distributions, which is known to provide a good fit to income distributions
in various countries (see the review and the discussion in Section 6.1.6 in Kleiber and Kotz, 2003,
Cowell and Flachaire, 2007, Davidson and Flachaire, 2007, Dufour et al., 2019, and references therein).
We adopt the same parameter values used in these studies and largely follow the notation in Cowell
and Flachaire (2007), Davidson and Flachaire (2007) and Dufour et al. (2019).

The cdf of an S-M distribution with the scale parameter 𝑏 > 0 and the shape parameters 𝑎, 𝑐 > 0

is given by

𝐹 (𝑥) = 1−
[︁
1 +

(︁𝑥
𝑏

)︁𝑎]︁−𝑐

, 𝑥 > 0, (4)

As in Dufour et al. (2019), the S-M distribution with parameters 𝑎, 𝑏, 𝑐 > 0 is denoted by
𝑆𝑀(𝑎, 𝑏, 𝑐) in what follows. It is easy to see that the cdf 𝐹 (𝑥) of 𝑆𝑀(𝑎, 𝑏, 𝑐) satisfies 𝐹 (𝑥) ∼ 𝑐

(︀
𝑥
𝑏

)︀𝑎 as

time series, panel, clustered, and spatially correlated data), selecting the number of groups 𝑞 = 8 or 𝑞 = 16 leads to
robust one-sample 𝑡-statistic tests with attractive finite sample performance. It is important to emphasize that the
asymptotic efficiency results for 𝑡-statistic based robust inference in Ibragimov and Müller (2010) imply that it is
not feasible to use data-dependent methods to determine the optimal number of groups 𝑞 when the only assumption
imposed on the data-generating process is asymptotic normality and asymptotic independence of group estimators of
the parameter of interest. That being so, it is both interesting and important for future research to explore if data-
driven optimal values can be derived for the number of groups in robust 𝑡-statistic inference, conditional on additional
assumptions such as the degree of heavy-tailedness in the populations.
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𝑥 → 0, and 1− 𝐹 (𝑥) ∼
(︀
𝑥
𝑏

)︀−𝑎𝑐 as 𝑥 → ∞. 14 Therefore the S-M distribution has the (double) power
law or (double) Pareto behavior in both tails (see Toda, 2012, for the analysis of double Pareto and
related distributions for income). For large 𝑥 > 0 the r.v.s (income or wealth levels) 𝑋 > 0 with the
S-M distribution 𝑆𝑀(𝑎, 𝑏, 𝑐) follows power law (1) with the tail index 𝜁 = 𝑎𝑐.

Following Cowell and Flachaire (2007), Davidson and Flachaire (2007) and Dufour et al. (2019),
we use parameter values 𝑎0 = 2.8, 𝑏0 = 100−1/2.8, 𝑐0 = 1.7 for the S-M distribution, with the
corresponding tail index 𝜁 = 𝑎0𝑐0 = 4.76, as a benchmark.15 For these values, the Theil index equals
0.140, and the Gini coefficient equals 0.289 (see Dufour et al., 2019). Cowell and Flachaire (2007) and
Davidson and Flachaire (2007) demonstrate the poor finite-sample performance of asymptotic and
bootstrap inference approaches using these parameter values.

Further, as in Dufour et al. (2019), we also consider several other S-M distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐)

with the above scale parameter 𝑏0 = 100−1/2.8 for which the Theil inequality index and the Gini index
are the same as in the case of 𝑆𝑀(𝑎0, 𝑏0, 𝑐0).

16 17

We note that the tail indices 𝜁 = 2.78, 2.59, 2.9 for the S-M distributions lie in the interval (1.5, 3) as
is typically the case for real-world income distributions, as discussed above. We also consider heavier-
tailed distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) = (2, 1.1), (2, 0.7) and 𝑏0 = 100−1/2.8. The corresponding
tail indices 𝜁 equal 2.2, 1.4.

3.1 Finite sample approximations to sampling distributions of full-sample
estimators

In this section, ℒ0 = ℒ(𝐹 ) denotes the true value of the inequality index ℒ (e.g., the Theil index or
Gini coefficient) for the population; ℒ̂ = ℒ̂(𝐼1, ..., 𝐼𝑁) denotes the full-sample estimator of ℒ calculated
using a sample of observations 𝐼1, ..., 𝐼𝑁 from the population; and ℒ̂𝑗, 𝑗 = 1, ..., 𝑞, denote the group
estimators of ℒ.

Asymptotic approaches to inference on inequality index ℒ are based on normal approximations
to sampling distributions of full-sample estimators ℒ̂ of the index – more precisely, on standard
normal approximations to sampling distributions of (full-sample) 𝑡−statistics 𝑆ℒ̂ = (ℒ̂ − ℒ0)/𝑠.𝑒.ℒ̂,
where 𝑠.𝑒.ℒ denotes the usual consistent standard error of ℒ̂ (see the formulae for inequality index
estimators and their standard errors in Cowell and Flachaire, 2007, Davidson and Flachaire, 2007,
and Dufour et al., 2019). As discussed in Section 2, the validity of 𝑡−statistic based robust inference

14As usual, we write 𝑓(𝑥) ∼ 𝑔(𝑥) as 𝑥 → 𝑥0 or 𝑥 → ∞ for two positive functions 𝑓(𝑥) and 𝑔(𝑥) if 𝑓(𝑥)/𝑔(𝑥) → 1 as
𝑥 → 𝑥0 or 𝑥 → ∞.

15This distribution is reported to provide a good fit to income distribution of German households, up to a scale
factor.

16In simulations involving the Theil index, we allow the parameters (𝑎, 𝑐) of the distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) to
equal (2.5, 2.502), (2.6, 2.1497), (2.7, 1.894), (2.8, 1.7), (3.0, 1.422), (3.2, 1.232), (3.4, 1.092), (3.8, 0.898), (4.8, 0.637) and
(5.8, 0.4996). The corresponding tail indices 𝜁 are 𝜁 = 6.26, 5.59, 5.11, 4.76, 4.27, 3.94, 3.71, 3.41, 3.06, 2.9.

17In simulations involving the Gini index, we allow, again as in Dufour et al. (2019), the parameters (𝑎, 𝑐) of the
distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) to equal (2.5,2.640), (2.6,2.218), (2.7,1.921), (2.8,1.7), (3.0,1.392), (3.2,1.187), (3.4,1.039),
(3.8,0.838), (4.8,0.578) and (5.8,0.447). The corresponding tail indices 𝜁 are 𝜁 =6.6, 5.77, 5.19, 4.76, 4.18, 3.80, 3.53,
3.19, 2.78, 2.59.
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approach requires weak convergence of group estimators ℒ̂𝑗, 𝑗 = 1, ..., 𝑞, of the inequality index ℒ
to possibly heterogeneous Gaussian distributions (without any Studentization/normalization of the
group estimators by their standard errors, in contrast to the 𝑡−statistics (𝑆ℒ̂) calculated using the
full-sample estimators). Asymptotic normality of group estimators ℒ̂𝑗 holds under the same conditions
as in the case of the full-sample estimators ℒ̂ (see the discussion in the introduction, Section 2 and
Appendix D).

We begin with an assessment of finite-sample distributions of (full-sample) inequality estimators
ℒ̂ and (full-sample) 𝑡−statistics 𝑆ℒ̂ calculated using them. We focus on the closeness of the above
finite-sample distributions to the Gaussian, and on comparisons of finite-sample distributions of the
(full-sample) 𝑡−statistics 𝑆ℒ̂ with those of the centered inequality index estimators normalized by
their true standard deviations, i.e., of the statistics 𝑍ℒ̂ = (ℒ̂−ℒ0)/𝜎ℒ̂, where 𝜎2

ℒ̂ = 𝑉 𝑎𝑟(ℒ̂). The true
values of the standard deviations 𝜎ℒ̂ for the populations and sample sizes considered are obtained
using direct simulations.

Figures 1-3 provide kernel estimates of densities of the finite-sample distributions of the statistics
𝑍ℒ̂ and 𝑆ℒ̂ for different population distributions and sample sizes.18 Figures 1 and 2 provide kernel
densities of the statistics 𝑍ℒ̂ (sample sizes 𝑁 = 50, 100, 1000) and 𝑆ℒ̂ (sample size 𝑁 = 100)19 for,
respectively, the estimates of Theil and Gini inequality indices for samples drawn from the S-M dis-
tributions 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with the parameters 𝑎0 = 2.8, 𝑏0 = 100−1/2.8, 𝑐0 = 1.7 and the corresponding
tail index 𝜁 = 4.76, mentioned earlier.

In the case of the Theil index in Figure 1, we observe some non-Gaussianity in the distribution
of the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for small and moderate-sized samples. In addition, the density of the
𝑡−statistic 𝑆ℒ̂ for Theil index is considerably (left) skewed in comparison to the densities of the
statistic 𝑍ℒ̂. In the case of the Gini coefficient in Figure 2, the distribution of the statistic 𝑍ℒ̂ is very
close to the standard normal even in small samples. In contrast, the distribution of the 𝑡−statistic 𝑆

is again skewed towards the left.
For S-M distributions with heavier tails, as with parameters (𝑎, 𝑐) = (5.8, 0.447) and correspond-

ingly, tail index 𝜁 = 2.59 in Figure 3, the finite sample distributions of the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for
the Gini coefficient become more skewed (the same is observed for the Theil index; the results are
omitted for brevity and available on request). Skewness is especially pronounced in the case of small
samples and the 𝑡−statistic 𝑆.

Overall, according to Figures 1-3, the normal approximation appears to perform better for finite-
sample distributions of the statistic 𝑍ℒ̂ as compared to those of the full-sample 𝑡−statistic 𝑆ℒ̂ used in
asymptotic tests and inference. Note that the group estimators used in the 𝑡−statistic based robust
inference approach are just scaled versions of the statistics 𝑍ℒ̂ calculated using observations in the
groups. Therefore, the above comparisons are to be expected to translate into better finite-sample
performance of the 𝑡−statistic approach as compared to the asymptotic approaches, provided that
the number of observations in each of the groups in the 𝑡−statistic approach is sufficiently large, e.g.,
greater than 100 (usually, it is the case in empirical applications with the number of groups 𝑞 = 4, 8).
For better size control, the number of groups, 𝑞, should be fewer if the total sample size 𝑁 is not very

18The number of replications in all simulation experiments is equal to 100,000.
19Qualitatively similar results for other sample sizes 𝑁 are omitted for brevity and available on request.

11



large.

Figure 1: Kernel density functions for the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for the Theil index: S-M distribution
𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76. Gaussian density: ; Statistic 𝑍ℒ̂, 𝑁 = 50:

; Statistic 𝑍ℒ̂, 𝑁 = 100: ; Statistic 𝑍ℒ̂, 𝑁 = 1000: ; Statistic 𝑆ℒ̂, 𝑁 = 100: ·

Figure 2: Kernel density functions for the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for the Gini index: S-M distribution
𝑆𝑀(𝑎, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76. Gaussian density: ; Statistic 𝑍ℒ̂, 𝑁 = 50:

; Statistic 𝑍ℒ̂, 𝑁 = 100: ; Statistic 𝑍ℒ̂, 𝑁 = 1000: ; Statistic 𝑆ℒ̂, 𝑁 = 100: ·
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Figure 3: Kernel density functions for the statistics 𝑍ℒ̂ and 𝑆ℒ̂ for the Gini index: S-M distribution
𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) = (5.8, 0.4473111) and 𝜁 = 2.59. Gaussian density: ; Statistic 𝑍ℒ̂, 𝑁 = 50:

; Statistic 𝑍ℒ̂, 𝑁 = 100: ; Statistic 𝑍ℒ̂, 𝑁 = 1000: ; Statistic 𝑆ℒ̂, 𝑁 = 100: ·

3.2 Two-sample problem: Inference on inequality comparing two popula-
tions

3.2.1 Inference in the two-sample problem: finite-sample distributions

In this section we focus on comparisons of the finite-sample performance of the 𝑡−statistic based
approach to two-sample robust inference, with the permutation and bootstrap tests proposed by
Dufour et al. (2019).

The true values of the inequality index ℒ in two populations with cdfs 𝐹𝐼 and 𝐹𝑌 are denoted
ℒ𝐼 = ℒ(𝐹𝐼) and ℒ𝑌 = ℒ(𝐹𝑌 ). The full-sample estimators of ℒ calculated using samples from the two
populations are ℒ̂𝐼 = ℒ̂𝐼(𝐼1, ..., 𝐼𝑁𝐼

) and ℒ̂𝑌 = ℒ̂𝑌 (𝑌1, ..., 𝑌𝑁𝑌
). The group estimators of ℒ in the two

samples are ℒ̂𝐼
1, ..., ℒ̂𝐼

𝑞𝐼
and ℒ̂𝑌

1 , ..., ℒ̂𝑌
𝑞𝑌
.

Asymptotic approaches to testing the hypothesis 𝐻0 : ℒ𝐼 − ℒ𝑌 = 𝑑0 (𝑑0 can be 0 corresponding
to the hypothesis of equality of the two inequality indices) against the two-sided alternative 𝐻𝑎 :

ℒ𝐼 − ℒ𝑌 ̸= 𝑑0 are based on the normal approximation to the sampling distribution of the difference
ℒ̂𝐼 − ℒ̂𝑌 ; more precisely, on the standard normal approximation to the sampling distribution of
the two-sample 𝑡−statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 = (ℒ̂𝐼 − ℒ̂𝑌 − 𝑑0)/𝑠.𝑒.ℒ̂𝐼−ℒ̂𝑌 , where 𝑠.𝑒.ℒ̂𝐼−ℒ̂𝑌 denotes the usual
consistent standard error of the difference ℒ̂𝐼 − ℒ̂𝑌 (see the formulae in Cowell and Flachaire, 2007,
Davidson and Flachaire, 2007, Dufour et al., 2019).

As in the previous section, the validity of the 𝑡−statistic based robust approach to two-sample
inference based on (2) requires weak convergence of the group estimators ℒ̂𝐼

𝑗 , ℒ̂𝑌
𝑘 , to possibly heteroge-

neous Gaussian distributions. Again, asymptotic normality of the group estimators ℒ̂𝐼
𝑗 , 𝑗 = 1, . . . , 𝑞𝐼 ,
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and ℒ̂𝑌
𝑘 , 𝑘 = 1, . . . , 𝑞𝑌 , holds under the same conditions as for the full-sample estimators ℒ̂𝐼 and ℒ̂𝑌 .

We refer to the previous section for the assessment of finite-sample distributions of the full-sample
estimators of inequality measures and their closeness to normality.

With 𝑞𝐼 = 𝑞𝑌 = 𝑞, the validity of the 𝑡−statistic based robust approach to two-sample inference
based on (3) - i.e., the one-sample 𝑡−statistic ˜̃𝑡ℒ in the 𝑞 differences ̂︀ℒ𝐼

𝑗 − ̂︀ℒ𝑌
𝑗 , 𝑗 = 1, ..., 𝑞, (without

Studentization/normalization) requires weak convergence of the differences ̂︀ℒ𝐼
𝑗 − ̂︀ℒ𝑌

𝑗 , to possibly
heterogeneous Gaussian distributions. Further, asymptotic normality of the differences ℒ̂𝐼

𝑗 −ℒ̂𝑌
𝑗 holds

under the same conditions as in the case of the difference ℒ̂𝐼−ℒ̂𝑌 between the full-sample estimators.
We begin with assessments of finite-sample distributions of the difference ℒ̂𝐼 − ℒ̂𝑌 between the

(full-sample) inequality estimators, and of the (full-sample) 𝑡−statistics 𝑆ℒ̂𝐼−ℒ̂𝑌 calculated using them,
examining their closeness to the Gaussian distribution. We focus on comparisons of the finite-sample
distributions of the 𝑡−statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 , with the difference ℒ̂𝐼 − ℒ̂𝑌 normalized by its true standard
deviation, that is, of the statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 = (ℒ̂𝐼 − ℒ̂𝑌 )/𝜎ℒ̂𝐼−ℒ̂𝑌 , where 𝜎2

ℒ̂𝐼−ℒ̂𝑌 = 𝑉 𝑎𝑟(ℒ̂𝐼 − ℒ̂𝑌 ).

In Figures 4-6, we present kernel estimates of the finite-sample densities of the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌

and 𝑆ℒ̂𝐼−ℒ̂𝑌 for samples from two populations with the same S-M distribution. Figures 4-5 present,
for Theil and Gini indices, the kernel densities of 𝑍ℒ̂𝐼−ℒ̂𝑌 (for 𝑁𝐼 = 𝑁𝑌 = 𝑁 = 50, 100, 1000) and
𝑆ℒ̂𝐼−ℒ̂𝑌 (𝑁 = 100)20 for samples drawn from the S-M distribution 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with the parameters
𝑎0 = 2.8, 𝑏0 = 100−1/2.8, 𝑐0 = 1.7 and the corresponding tail index 𝜁 = 4.76. Figure 6 provides the
analogous kernel densities for the Gini index when two samples are drawn from a more heavy-tailed
S-M distribiion 𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) = (5.8, 0.447) and the tail index 𝜁 = 2.59.

The finite-sample distributions of the statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 and thus of the difference ℒ̂𝐼 − ℒ̂𝑌 are
approximately symmetric even with rather small samples and also under pronounced heavy-tailedness,
with satisfactory Gaussian approximations as compared to the finite-sample distribution of the (full-
sample) 𝑡−statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 . This also holds when the sample sizes are not very different. 21

3.2.2 Inference in two-sample problem: finite-sample size properties

Tables 1-3 provide the finite-sample size properties of the asymptotic, permutation, bootstrap
and 𝑡−statistic based robust tests of equality of Theil and Gini indices. As before, we consider two
samples, 𝐼1, ..., 𝐼𝑁𝐼

and 𝑌1, ..., 𝑌𝑁𝑌
, drawn from 𝑆𝑀(𝑎𝐼 , 𝑏0, 𝑐𝐼) and 𝑆𝑀(𝑎𝑌 , 𝑏0, 𝑐𝑌 ), with 𝑏0 = 100−1/2.8

and tail indices 𝜁𝐼 = 𝑎𝐼𝑐𝐼 , 𝜁𝑌 = 𝑎𝑌 𝑐𝑌 . In simulations, we consider a variety of settings with equal as
well as different sample sizes 𝑁𝐼 , 𝑁𝑌 ; and a range of numbers of groups 𝑞𝐼 , 𝑞𝑌 for 𝑡−statistic based
robust tests. We focus on the important and empirically relevant case of samples drawn from different
(income or wealth) distributions, with the results for the case of identical distributions presented and
discussed in Appendix C.

Table 1 presents results for identical sample sizes 𝑁𝐼 = 𝑁𝑌 = 𝑁 = 200, and different distributions.
The empirical sizes of the simple-to-use two-sample 𝑡−statistic based robust tests based on (2) with
𝑞 = 4, 8 in the case of more heavy-tailed distributions, and based on (3) with 𝑞 = 4, 8, 12, 16 in the

20Qualitatively similar results for other sample sizes 𝑁 are omitted for brevity and available on request.
21If the sample sizes of two groups are very different, then different partition, 𝑞𝐼 , 𝑞𝑌 should be used in applications

of the 𝑡-statistic inference approach.

14



Figure 4: Kernel density functions for the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌 and 𝑆ℒ̂𝐼−ℒ̂𝑌 for the difference between
Theil indices: S-M distributions 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76. Gaussian
density: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 50: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 ,
𝑁 = 1000: ; Statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ·

Figure 5: Kernel density functions for the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌 and 𝑆ℒ̂𝐼−ℒ̂𝑌 for the difference between
Gini indices: S-M distributions 𝑆𝑀(𝑎0, 𝑏0, 𝑐0) with (𝑎0, 𝑐0) = (2.8, 1.7) and 𝜁 = 4.76.. Gaussian
density: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 50: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 ,
𝑁 = 1000: , Statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ·
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Figure 6: Kernel density functions for the statistics 𝑍ℒ̂𝐼−ℒ̂𝑌 and 𝑆ℒ̂𝐼−ℒ̂𝑌 for the difference between
Gini indices: S-M distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) with (𝑎, 𝑐) = (5.8, 0.4473111) and 𝜁 = 2.59. Gaussian
density: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 50: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ; Statistic 𝑍ℒ̂𝐼−ℒ̂𝑌 ,
𝑁 = 1000: ; Statistic 𝑆ℒ̂𝐼−ℒ̂𝑌 , 𝑁 = 100: ·

case of less heavy-tailed distributions, are comparable and in some cases are better than those of the
computationally expensive permutation and bootstrap tests. The two-sample 𝑡−statistic based tests
with the same number of groups 𝑞𝐼 = 𝑞𝑌 = 𝑞 appear to have less over-rejections as compared to the
one-sample 𝑡−statistic based tests for differences of the group estimators.

Table 2 provides results for different sample sizes 𝑁𝐼 , 𝑁𝑌 and different distributions. We observe
better size properties for the two-sample 𝑡−statistic based inference approach in comparison to per-
mutation and bootstrap tests, based on 𝑡ℒ in (2) (with 𝑞𝐼 = 𝑞𝑌 = 4, 8, 12 for all sample sizes, and
also with 𝑞 = 16 for large sample sizes) as well as those based on ˜̃𝑡ℒ in (3) (with 𝑞𝐼 = 𝑞𝑌 = 4, 8 for all
sample sizes) .

Finally, Table 3 provides the results for the case of samples with dependent observations, i.e.,
those with spatially dependent data. Each of the two samples consists of 192 observations with the
standard lognormal distribution (𝜇 = 0 and 𝜎 = 1) located on a rectangular array of unit squares
with 16 rows and 12 columns. The observations are generated such that the correlation between the
logarithms of two observations is given by exp(−𝜑𝑑) for some 𝜑 > 0, where 𝑑 is the Euclidean distance
between the two observations (see Section 3.4 in Ibragimov and Müller (2010) for the use of a similar
spatially correlated setting in the analysis of finite sample size properties of one-sample 𝑡−statistic
based approach for inference on the mean of Gaussian observations with spatial dependence). The
case 𝜑 = ∞ corresponds to samples of i.i.d. observations. More precisely, the observations in the
samples are given by 𝐼𝑖𝑗 = exp(𝑢𝑖𝑗), 𝑌𝑖𝑗 = exp(𝑣𝑖𝑗), 𝑖 = 1, ..., 16, 𝑗 = 1, ..., 12, where 𝑢𝑖𝑗 and 𝑣𝑖𝑗 are
multivariate mean zero unit variance Gaussian with correlation between 𝑢𝑖𝑗 and 𝑢𝑙𝑘 and between 𝑣𝑖𝑗
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and 𝑣𝑙𝑘 equals exp(−𝜑
√︀

(𝑖− 𝑙)2 + (𝑗 − 𝑘)2).

The empirical size properties of 𝑡−statistic tests of equality of Theil and Gini indices in the
two samples with spatial dependence are comparable (especially, for tests based on the two-sample
𝑡−statistic ˜̃𝑡 with 𝑞𝐼 = 𝑞𝑌 = 𝑞 = 4 groups and the one-sample 𝑡−statistic 𝑡 in differences with 𝑞 = 8)
to those of permutation and bootstrap procedures. Furthermore, the finite sample size properties of
essentially all 𝑡−statistic based robust tests are better than those of bootstrap and permutation tests
under pronounced spatial dependence with 𝜑 = 1.

Table 1: Empirical size – identical sample sizes, different distributions

Theil\𝜁𝑌 6.26 3.94 2.9 Gini \𝜁𝑌 6.6 3.8 2.59
asy 5.1 5.4 12.3 asy 5.2 5.5 8.0

𝑡ℒ(𝑞 = 4) 1.9 1.5 4.0 𝑡ℒ(𝑞 = 4) 1.9 1.7 2.7
𝑡ℒ(𝑞 = 8) 3.1 2.9 8.7 𝑡ℒ(𝑞 = 8) 3.2 3.1 5.1
𝑡ℒ(𝑞 = 12) 3.6 3.4 11.4 𝑡ℒ(𝑞 = 12) 3.8 3.6 6.6
𝑡ℒ(𝑞 = 16) 4.0 3.9 13.6 𝑡ℒ(𝑞 = 16) 3.9 3.9 7.8
˜̃𝑡ℒ(𝑞 = 4) 4.8 4.3 7.2 ˜̃𝑡ℒ(𝑞 = 4) 5.1 4.7 5.7
˜̃𝑡ℒ(𝑞 = 8) 5.0 4.5 10.6 ˜̃𝑡ℒ(𝑞 = 8) 5.1 4.8 6.6
˜̃𝑡ℒ(𝑞 = 12) 4.8 4.6 12.6 ˜̃𝑡ℒ(𝑞 = 12) 5.0 4.8 8.1
˜̃𝑡ℒ(𝑞 = 16) 5.1 4.8 14.5 ˜̃𝑡ℒ(𝑞 = 16) 5.0 4.8 8.8

permutation 4.8 4.8 11.0 permutation 4.4 4.6 6.2
bootstrap 4.8 4.7 10.6 bootstrap 4.6 4.4 6.3

Notes: 𝑁𝐼 = 𝑁𝑌 = 200, (𝑎𝐼 , 𝑐𝐼) = (2.8, 1.7), 𝜁𝐼 = 4.76.

Theil index: (𝑎𝑌 , 𝑐𝑌 )=(2.5, 2.502), (3.2, 1.232), (5.8, 0.4996).

Gini coefficient: (𝑎𝑌 , 𝑐𝑌 )=(2.5, 2.640), (3.2, 1.1866), (5.8, 0.447).

Table 2: Empirical size – different distributions, different sample sizes

Theil, 𝜁𝑌 = 2.9 \𝑁𝑌 50 200 500 1000 5000 Gini, 𝜁𝑌 = 2.59\𝑁𝑌 50 200 500 1000 5000
asymptotic 14.5 12.3 12.2 11.2 9.0 asymptotic 12.6 8.0 7.5 6.6 6.0
𝑡ℒ(𝑞 = 4) 3.9 4.0 4.8 4.2 4.0 𝑡ℒ(𝑞 = 4) 2.8 2.7 2.9 2.7 2.6
𝑡ℒ(𝑞 = 8) 8.8 8.7 8.6 8.0 6.7 𝑡ℒ(𝑞 = 8) 6.0 5.1 5.1 4.8 4.3
𝑡ℒ(𝑞 = 12) 11.4 11.4 11.3 9.7 7.8 𝑡ℒ(𝑞 = 12) 7.7 6.6 6.6 5.8 5.1
𝑡ℒ(𝑞 = 16) 13.9 13.6 12.8 11.2 8.4 𝑡ℒ(𝑞 = 16) 9.8 7.8 7.5 6.6 5.5
˜̃𝑡ℒ(𝑞 = 4) 6.9 7.2 7.8 7.3 6.6 ˜̃𝑡ℒ(𝑞 = 4) 5.7 5.7 6.1 5.7 5.2
˜̃𝑡ℒ(𝑞 = 8) 11.1 10.6 10.2 9.6 7.9 ˜̃𝑡ℒ(𝑞 = 8) 8.2 6.6 6.8 6.2 5.6
˜̃𝑡ℒ(𝑞 = 12) 13.0 12.6 12.2 10.9 8.7 ˜̃𝑡ℒ(𝑞 = 12) 9.3 8.1 7.7 6.9 6.2
˜̃𝑡ℒ(𝑞 = 16) 14.9 14.5 13.6 12.1 9.0 ˜̃𝑡ℒ(𝑞 = 16) 11.0 8.8 8.2 7.4 6.2

permutation 12.4 11.0 11.6 10.5 8.8 permutation 8.9 6.2 6.5 6.1 5.6
bootstrap 12.2 10.6 11.1 10.4 8.5 bootstrap 9.1 6.3 6.3 6.0 5.7

Notes: 𝑁𝐼 = 200, 𝜁𝐼 = 4.76.
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Table 3: Empirical size – spatial correlation

Theil \𝜑 ∞ 2 1 Gini\𝜑 ∞ 2 1
asymptotic 7.1 7.6 14.6 asymptotic 7.4 7.9 16.3
𝑡ℒ(𝑞 = 4) 1.6 1.6 2.0 𝑡ℒ(𝑞 = 4) 1.6 1.6 2.0
𝑡ℒ(𝑞 = 8) 5.4 5.3 6.0 𝑡ℒ(𝑞 = 8) 5.4 5.3 6.0
𝑡ℒ(𝑞 = 12) 6.8 7.3 8.1 𝑡ℒ(𝑞 = 12) 6.8 7.3 8.1
𝑡ℒ(𝑞 = 16) 7.5 7.8 8.7 𝑡ℒ(𝑞 = 16) 7.5 7.8 8.7
˜̃𝑡ℒ(𝑞 = 4) 4.2 4.3 4.7 ˜̃𝑡ℒ(𝑞 = 4) 4.2 4.3 4.7
˜̃𝑡ℒ(𝑞 = 8) 7.1 7.4 8.1 ˜̃𝑡ℒ(𝑞 = 8) 7.1 7.4 8.1
˜̃𝑡ℒ(𝑞 = 12) 8.2 8.6 9.7 ˜̃𝑡ℒ(𝑞 = 12) 8.2 8.6 9.7
˜̃𝑡ℒ(𝑞 = 16) 8.7 9.0 9.8 ˜̃𝑡ℒ(𝑞 = 16) 8.7 9.0 9.8

permutation 4.4 4.8 10.1 permutation 4.1 4.3 9.3
bootstrap 4.4 4.9 11.2 bootstrap 4.3 4.9 11.0

3.2.3 Inference in two-sample problem: Finite-sample power properties

We turn to the study of finite-sample, size-adjusted power of the two-sample 𝑡−statistic based
test and the permutation test.22 With size adjustment, the empirical size of a given 𝑡-statistic-based
robust test and its permutation counterpart coincide under the null hypothesis, thereby enabling
meaningful power comparisons. We consider a variety of simulation designs.

Table 4 presents the power and Table 5 presents the size-adjusted power when the two samples
come from different S-M distributions. The results in the tables demonstrate that 𝑡-statistic approach
is slightly undersized, leading to higher size-adjusted power in comparison to the non-size-adjusted
case. The reason of using size-adjusted power is to compare the performance of the different tests with
different sizes. The permutation test appears to be the most powerful with the two-sample 𝑡-statistic
based tests (using 𝑡ℒ in 2) close behind (for 𝑞 = 12, 16). The two-sample tests based on 𝑡ℒ (2) with
𝑞𝐼 = 𝑞𝑌 = 𝑞 are always more powerful than those based on the one-sample 𝑡−statistic ˜̃𝑡ℒ (3) in the
differences of the group estimators with the same number of groups.23

Tables 6 and 7 provide the results on finite sample power properties of different inference ap-
proaches in the case of more heavy-tailed distributions, standard (unadjusted) and size-adjusted,
respectively. Similar to the previous case, the results in the tables show that 𝑡-statistic approach is
slightly undersized, leading, as before, to higher size-adjusted power in comparison to the non-size-
adjusted case. In the case of Theil or Gini indices, the 𝑡−statistic based tests based on 𝑡ℒ in (2) with

22Size adjustment is not performed for bootstrap tests as they are strongly dominated in terms of power by permu-
tation test in all settings considered, see also Dufour et al. (2019).

23In inference on both Theil and Gini indices, the power of 𝑡−statistic based approach based on (2) is very similar
across 𝑞 = 8, 12, 16 if the second distribution is more light-tailed than the first one (𝑐 > 𝑐0 and 𝜁𝑌 > 𝜁𝐼) and also very
similar for 𝑞 = 12, 16 if the second distribution is more heavy-tailed than the first one (𝑐 < 𝑐0 and 𝜁𝑌 < 𝜁𝐼). In the
former case the best power is returned by the 𝑡−statistic based test based on (2) with 𝑞𝐼 = 𝑞𝑌 = 𝑞 = 8, 12. In the
latter case the most powerful 𝑡−statistic test for inference on Theil indices is the one based on (2) with 𝑞𝐼 = 𝑞𝑌 = 16,

and the second best test is the 𝑡-statistic based test based on (2) with 𝑞𝐼 = 𝑞𝑌 = 12. Further, in this case the most
powerful 𝑡−statistic test for inference on Gini indices is the test based on (2) with 𝑞𝐼 = 𝑞𝑌 = 12.
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Table 4: Power – identical sample sizes

Theil\𝜁𝑌 1.96 3.08 4.76 7.56 88.76 Gini\𝜁𝑌 1.96 3.08 4.76 7.56 88.76
asymptotic 68.5 22.3 8.4 30.2 97.8 asymptotic 98.3 44.4 5.9 27.4 93.2
𝑡ℒ(𝑞 = 4) 21.8 4.7 2.0 8.6 63.2 𝑡ℒ(𝑞 = 4) 64.5 14.7 2.0 10.0 57.3
𝑡ℒ(𝑞 = 8) 42.9 9.4 3.2 15.8 88.3 𝑡ℒ(𝑞 = 8) 91.1 27.1 3.5 16.6 80.4
𝑡ℒ(𝑞 = 12) 47.1 11.1 3.7 17.9 90.3 𝑡ℒ(𝑞 = 12) 93.7 29.4 3.7 18.0 81.5
𝑡ℒ(𝑞 = 16) 49.9 11.7 4.0 19.0 90.3 𝑡ℒ(𝑞 = 16) 94.5 30.8 4.3 18.7 81.4
˜̃𝑡ℒ(𝑞 = 4) 27.7 9.0 4.6 14.0 64.1 ˜̃𝑡ℒ(𝑞 = 4) 65.7 21.3 4.9 15.6 60.3
˜̃𝑡ℒ(𝑞 = 8) 45.2 11.6 4.9 18.8 87.4 ˜̃𝑡ℒ(𝑞 = 8) 90.3 30.4 4.8 19.9 79.4
˜̃𝑡ℒ(𝑞 = 12) 49.0 12.4 4.8 20.0 89.4 ˜̃𝑡ℒ(𝑞 = 12) 93.2 31.8 5.1 20.1 80.8
˜̃𝑡ℒ(𝑞 = 16) 50.6 12.9 4.8 20.2 90.0 ˜̃𝑡ℒ(𝑞 = 16) 94.2 32.1 5.2 19.8 81.3

permutation 48.2 13.6 4.8 19.6 94.2 permutation 97.6 39.7 4.5 21.6 90.0
bootstrap 43.1 12.3 3.9 18.4 91.1 bootstrap 95.2 39.0 4.6 21.8 90.2

Notes: 𝑁𝐼 = 𝑁𝑌 = 200.

𝑞𝐼 = 𝑞𝑌 = 𝑞 for 𝑡−statistic based tests.

I sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎0 = 2.8, 𝑐0 = 1.7, 𝜁𝐼 = 4.76.

II sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎0 = 2.8, 𝑐 = 0.7, 1.1, 1.7, 2.7, 31.7; 𝜁𝑌 = 1.96, 3.08, 4.76, 7.56, 88.76.

Table 5: Size-adjusted power – identical sample sizes

Theil\𝜁𝑌 1.96 3.08 4.76 7.56 88.76 Gini\𝜁𝑌 1.96 3.08 4.76 7.56 88.76
asymptotic 87.2 35.6 4.7 23.6 90.4 asymptotic 97.5 39.2 4.5 23.3 91.4
𝑡ℒ(𝑞 = 4) 62.6 22.5 4.7 17.6 72.3 𝑡ℒ(𝑞 = 4) 82.4 26.2 4.5 17.5 75.4
𝑡ℒ(𝑞 = 8) 82.7 29.4 4.7 20.7 83.6 𝑡ℒ(𝑞 = 8) 93.6 31.6 4.5 19.6 84.1
𝑡ℒ(𝑞 = 12) 88.3 30.5 4.7 21.4 83.5 𝑡ℒ(𝑞 = 12) 94.7 32.5 4.5 20.3 83.6
𝑡ℒ(𝑞 = 16) 91.1 30.8 4.7 20.8 82.8 𝑡ℒ(𝑞 = 16) 94.7 31.3 4.5 19.2 81.9
˜̃𝑡ℒ(𝑞 = 4) 43.6 17.3 4.7 15.2 55.2 ˜̃𝑡ℒ(𝑞 = 4) 63.4 20.0 4.5 14.7 57.9
˜̃𝑡ℒ(𝑞 = 8) 75.5 26.3 4.7 19.5 77.2 ˜̃𝑡ℒ(𝑞 = 8) 89.2 28.8 4.5 18.5 77.7
˜̃𝑡ℒ(𝑞 = 12) 83.6 27.5 4.7 19.3 78.7 ˜̃𝑡ℒ(𝑞 = 12) 92.0 29.2 4.5 18.1 78.5
˜̃𝑡ℒ(𝑞 = 16) 88.4 28.7 4.7 19.6 79.4 ˜̃𝑡ℒ(𝑞 = 16) 93.1 29.8 4.5 18.2 78.8

permutation 91.6 37.4 4.7 21.9 88.7 permutation 97.6 39.7 4.5 21.6 90.0
bootstrap 77.7 33.6 4.3 20.6 87.2 bootstrap 95.2 39.0 4.6 21.8 90.2

Notes: 𝑁𝐼 = 𝑁𝑌 = 200.

𝑞𝐼 = 𝑞𝑌 = 𝑞 for 𝑡−statistic based tests.

I sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎0 = 2.8, 𝑐0 = 1.7, 𝜁𝐼 = 4.76.

II sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎0 = 2.8, 𝑐 = 0.7, 1.1, 1.7, 2.7, 31.7; 𝜁𝑌 = 1.96, 3.08, 4.76, 7.56, 88.76.

𝑞𝐼 = 𝑞𝑌 = 8, 12, 16 are typically the most powerful among such tests with different choices of the
number of groups (for not very light-tailed second distribution); they are typically more powerful
than permutation tests. In the case of Theil indices, the best power properties are observed for the
𝑡−statistic based tests with 𝑞 = 16, and the second best test is the 𝑡-statistic test based on (2) with
𝑞𝐼 = 𝑞𝑌 = 12. The choice of 𝑞 = 12, 16 also provides the best power properties for 𝑡−statistic tests
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based on 𝑡ℒ in (2) in inference on Gini indices.

Table 6: Power, 𝜁𝐼 = 2.2, identical sample sizes 𝑁𝐼 = 𝑁𝑌 = 200

Theil\𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini\𝜁𝑌 1.4 1.8 2.2 3 7.4
asymptotic 58.5 19.0 7.6 24.2 91.4 asymptotic 89.1 38.5 5.4 25.8 91.8
𝑡ℒ(𝑞 = 4) 10.8 2.9 1.5 5.2 43.9 𝑡ℒ(𝑞 = 4) 39.4 11.2 1.8 8.7 49.8
𝑡ℒ(𝑞 = 8) 27.7 6.5 2.4 11.7 76.2 𝑡ℒ(𝑞 = 8) 73.5 22.0 2.9 15.3 76.4
𝑡ℒ(𝑞 = 12) 36.5 8.2 2.9 14.6 84.3 𝑡ℒ(𝑞 = 12) 83.6 25.1 3.4 17.1 79.1
𝑡ℒ(𝑞 = 16) 41.5 9.8 3.4 16.0 87.8 𝑡ℒ(𝑞 = 16) 88.8 27.1 3.8 18.2 80.0
˜̃𝑡ℒ(𝑞 = 4) 14.3 5.6 3.5 9.3 46.0 ˜̃𝑡ℒ(𝑞 = 4) 41.4 16.1 4.4 14.2 53.0
˜̃𝑡ℒ(𝑞 = 8) 30.3 8.1 3.7 14.0 75.6 ˜̃𝑡ℒ(𝑞 = 8) 73.5 24.6 4.3 18.3 75.5
˜̃𝑡ℒ(𝑞 = 12) 37.8 9.2 3.8 16.3 83.8 ˜̃𝑡ℒ(𝑞 = 12) 83.2 27.0 4.5 19.1 78.3
˜̃𝑡ℒ(𝑞 = 16) 42.8 10.9 4.1 17.4 87.6 ˜̃𝑡ℒ(𝑞 = 16) 88.4 28.6 4.6 19.5 79.3

permutation 34.2 11.8 4.7 17.3 90.0 permutation 95.5 38.3 4.6 22.0 90.1
bootstrap 26.2 8.9 3.3 13.8 78.2 bootstrap 82.4 34.5 4.3 21.2 88.4

Notes: 𝑁𝐼 = 𝑁𝑌 = 200.

I sample distribution: 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎 = 2, 𝑐 = 1.1 and 𝜁𝐼 = 2.2.

II sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) 𝑎 = 2, 𝑐 = 0.7, 0.9, 1.1, 1.5, 3.7; 𝜁𝑌 = 1.4, 1.8, 2.2, 3, 7.4.

Table 7: Size-adjusted power, 𝜁𝐼 = 2.2, identical sample sizes 𝑁𝐼 = 𝑁𝑌 = 200

Theil\𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini\𝜁𝑌 1.4 1.8 2.2 3 7.4
asymptotic 49.76 13.71 4.71 17.72 85.99 asymptotic 59.93 15.61 4.75 21.05 95.03
𝑡ℒ(𝑞 = 4) 28.37 9.25 4.71 15.83 73.85 𝑡ℒ(𝑞 = 4) 39.79 10.82 4.75 17.89 83.77
𝑡ℒ(𝑞 = 8) 40.72 11.3 4.71 18.76 87.21 𝑡ℒ(𝑞 = 8) 51.02 12.83 4.75 20.52 92.41
𝑡ℒ(𝑞 = 12) 45.08 11.97 4.71 19.95 90.05 𝑡ℒ(𝑞 = 12) 52.19 13.36 4.75 21.2 92.33
𝑡ℒ(𝑞 = 16) 47.94 12.4 4.71 20.1 91.22 𝑡ℒ(𝑞 = 16) 52.51 13.08 4.75 20.71 91.51
˜̃𝑡ℒ(𝑞 = 4) 20.04 7.72 4.71 12.81 56.42 ˜̃𝑡ℒ(𝑞 = 4) 28.35 9.3 4.75 14.38 64.9
˜̃𝑡ℒ(𝑞 = 8) 34.93 9.77 4.71 16.56 80.37 ˜̃𝑡ℒ(𝑞 = 8) 44.19 11.25 4.75 18.05 86.69
˜̃𝑡ℒ(𝑞 = 12) 40.99 10.53 4.71 18.18 86.32 ˜̃𝑡ℒ(𝑞 = 12) 48.82 12.43 4.75 19.97 89.29
˜̃𝑡ℒ(𝑞 = 16) 45.19 11.98 4.71 19.17 89.14 ˜̃𝑡ℒ(𝑞 = 16) 50.57 12.85 4.75 20.14 89.97

permutation 34.17 11.79 4.71 17.33 89.95 permutation 48.24 13.6 4.75 19.63 94.18
bootstrap 26.18 8.92 3.32 13.78 78.16 bootstrap 43.1 12.25 3.87 18.39 91.1

Notes: 𝑁𝐼 = 𝑁𝑌 = 200.

I sample distribution: 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎 = 2, 𝑐 = 1.1 and 𝜁𝐼 = 2.2.

II sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) 𝑎 = 2, 𝑐 = 0.7, 0.9, 1.1, 1.5, 3.7; 𝜁𝑌 = 1.4, 1.8, 2.2, 3, 7.4.

Tables 8 and 9 provide the results on finite-sample power properties of different inference ap-
proaches for heavy-tailed distributions, including those considered in Table 7. The two-sample 𝑡-
statistic based tests are typically much more powerful than permutation tests if the more heavy-tailed
distribution has a larger sample size. Again, two-sample 𝑡-statistic based tests based on 𝑡ℒ (2) with
the number of groups 𝑞𝐼 = 𝑞𝑌 = 𝑞 are always more powerful than those based on the one-sample
𝑡−statistic ˜̃𝑡ℒ (3) in the differences of the group estimators with the same number of groups.
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Table 8: Size-adjusted power– different sample sizes
Theil\𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini\𝜁𝑌 1.4 1.8 2.2 3 4.4

asymptotic 62.61 20.09 4.47 13.74 87.24 asymptotic 73.49 21.82 4.2 21.41 75.46
𝑡ℒ(𝑞 = 4) 40.75 14.61 4.47 9.84 68.67 𝑡ℒ(𝑞 = 4) 57.1 16.06 4.2 16.47 56.77
𝑡ℒ(𝑞 = 8) 58.48 19.39 4.47 8.33 80.52 𝑡ℒ(𝑞 = 8) 72.14 21.62 4.2 18.05 67.1
𝑡ℒ(𝑞 = 12) 65.39 22.06 4.47 5.08 78.17 𝑡ℒ(𝑞 = 12) 75.29 22.9 4.2 15.64 63.4
𝑡ℒ(𝑞 = 16) 70.03 23.41 4.47 3.06 73.4 𝑡ℒ(𝑞 = 16) 78.8 24.63 4.2 14.53 62.81
˜̃𝑡ℒ(𝑞 = 4) 28.92 11.94 4.47 7.94 49.73 ˜̃𝑡ℒ(𝑞 = 4) 39.41 12.4 4.2 11.21 36.8
˜̃𝑡ℒ(𝑞 = 8) 51.49 17.78 4.47 7.41 72.84 ˜̃𝑡ℒ(𝑞 = 8) 64.51 19.31 4.2 14.92 57.43
˜̃𝑡ℒ(𝑞 = 12) 59.87 20.39 4.47 4.48 71.01 ˜̃𝑡ℒ(𝑞 = 12) 72.52 22.26 4.2 15.32 60.2
˜̃𝑡ℒ(𝑞 = 16) 65.75 22.16 4.47 2.96 68.15 ˜̃𝑡ℒ(𝑞 = 16) 75.23 22.96 4.2 13.53 58.66

permutation 45.47 13.75 4.47 23.59 96.1 permutation 58.98 16.22 4.2 27.71 82.51
bootstrap 28.62 9.72 3.23 20.1 89.22 bootstrap 50.06 14.59 3.85 25.86 78.94

Notes: 𝑁𝐼 = 200, 𝑁𝑌 = 400.

I sample distribution: 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎 = 2, 𝑐 = 1.1 and 𝜁𝐼 = 2.2.

Theil index II sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) 𝑎 = 2, 𝑐 = 0.7, 0.9, 1.1, 1.5, 3.7; 𝜁𝑌 = 1.4, 1.8, 2.2, 3, 7.4.

Gini index II sample distribution replaces the last column with 𝑐 = 2.2 and 𝜁𝑌 = 4.4.

Table 9: Size-adjusted power – different sample sizes
Theil 𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini 𝜁𝑌 1.4 1.8 2.2 3 4.4

asymptotic 44.56 9.2 4.15 27.76 92.67 asymptotic 64.67 14.91 4.45 32.15 84.15
𝑡ℒ(𝑞 = 4) 19.25 4.87 4.15 23.21 83.34 𝑡ℒ(𝑞 = 4) 38.92 9.19 4.45 25.61 70.46
𝑡ℒ(𝑞 = 8) 21.13 3.53 4.15 28.2 92.52 𝑡ℒ(𝑞 = 8) 46.64 9.29 4.45 31.18 80.64
𝑡ℒ(𝑞 = 12) 15.17 2.01 4.15 27.94 93.97 𝑡ℒ(𝑞 = 12) 44 7.99 4.45 31.57 80.67
𝑡ℒ(𝑞 = 16) 11.7 1.3 4.15 30.44 95.66 𝑡ℒ(𝑞 = 16) 42.78 7.21 4.45 32.73 81.5
˜̃𝑡ℒ(𝑞 = 4) 12.9 4.23 4.15 17.61 65.25 ˜̃𝑡ℒ(𝑞 = 4) 26.82 7.66 4.45 19.65 52.38
˜̃𝑡ℒ(𝑞 = 8) 16.79 3.02 4.15 24.4 86.85 ˜̃𝑡ℒ(𝑞 = 8) 41.27 8.31 4.45 28.27 74.04
˜̃𝑡ℒ(𝑞 = 12) 13.08 1.77 4.15 25.76 90.44 ˜̃𝑡ℒ(𝑞 = 12) 40.46 7.34 4.45 29.29 76.66
˜̃𝑡ℒ(𝑞 = 16) 10.53 1.23 4.15 28.23 93.5 ˜̃𝑡ℒ(𝑞 = 16) 40.28 7.06 4.45 30.68 78.65

permutation 44.57 14.95 4.15 21.71 97.47 permutation 62.78 18.55 4.45 24.75 77.41
bootstrap 40.34 12.9 3.58 16.33 84.87 bootstrap 59.58 17.66 4.12 23.13 74.1

Notes: 𝑁𝐼 = 400, 𝑁𝑌 = 200.

I sample distribution: 𝑆𝑀(𝑎, 𝑏0, 𝑐), 𝑎 = 2, 𝑐 = 1.1 and 𝜁𝐼 = 2.2.

Theil index II sample distribution 𝑆𝑀(𝑎, 𝑏0, 𝑐) 𝑎 = 2, 𝑐 = 0.7, 0.9, 1.1, 1.5, 3.7; 𝜁𝑌 = 1.4, 1.8, 2.2, 3, 7.4.

Gini index II sample distribution replaces the last column with 𝑐 = 2.2 and 𝜁𝑌 = 4.4.

Table 10 gives the results on finite-sample size-adjusted power of different inference approaches
in the same distributional settings as in Table 8 with sample sizes 𝑁𝐼 = 200 and 𝑁𝑌 = 800. Ta-
ble 11 provides the results on finite-sample size-adjusted power properties of the approaches in the
same settings as in Table 9 with sample sizes 𝑁𝐼 = 800 and 𝑁𝑌 = 200. We also consider different
combinations of numbers 𝑞𝐼 and 𝑞𝑌 of groups for the 𝑡−statistic based approach.

According to the results in Tables 10 and 11, if the smaller sample is more heavy-tailed then
the power of all two-sample 𝑡-statistic based tests is dominated by that of permutation tests. Else,
if the larger sample is more heavy-tailed then the power properties of two-sample 𝑡-statistic based
tests (except the tests with very small 𝑞𝐼 and 𝑞𝑌 ) are typically considerably better than those of
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permutation test. For inference on Theil indices, the best (compromise) choice of the number of
groups in 𝑡−statistic based approach is 𝑞𝐼 = 12, 𝑞𝑌 = 6 or vice versa because this choice leads
to correct size and good power in comparison to other size-controlled two-sample 𝑡-statistic based
tests. For Gini indices, the finite-sample power properties are not very sensitive to choice 𝑞𝐼 and 𝑞𝑌 .
Interestingly, even if the samples differ by four times as in the tables, the choice 𝑞𝐼 = 𝑞𝑌 = 8, 12, 16

leads to a very good size-adjusted power and seems to be one of the best across all combinations of
𝑞𝐼 and 𝑞𝑌 . The choice 𝑞𝐼 = 12 and 𝑞𝑌 = 9 is also good and leads to power properties of 𝑡−statistic
inference approach that are comparable or slightly better than in the case 𝑞𝐼 = 𝑞𝑌 = 8, 12, 16. The
choice of the different number of groups 𝑞𝐼 and 𝑞𝑌 may be useful if the sizes of two samples differ
very much.

Table 10: Size-adjusted power, 𝜁𝐼 = 2.2, different sample sizes, 𝑁𝐼 = 200, 𝑁𝑌 = 800

Theil \𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini \𝜁𝑌 1.4 1.8 2.2 3 4.4
asymptotic 64.9 23.7 4.7 7.6 82.03 asymptotic 81.2 29.1 4.8 21.8 79.6
𝑡ℒ(𝑞 = 4) 45.8 18.5 4.7 6.2 58.53 𝑡ℒ(𝑞 = 4) 69.9 22.6 4.8 16.8 58.7
𝑡ℒ(𝑞 = 8) 58.8 21.4 4.7 2.3 60.79 𝑡ℒ(𝑞 = 8) 83.0 28.0 4.8 15.0 65.3
𝑡ℒ(𝑞 = 12) 65.5 22.5 4.7 0.8 49.03 𝑡ℒ(𝑞 = 12) 87.1 30.6 4.8 11.6 60.9
𝑡ℒ(𝑞 = 16) 71.4 24.4 4.7 0.3 37.4 𝑡ℒ(𝑞 = 16) 89.7 31.8 4.8 9.0 57.1

𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 3) 41.9 16.8 4.7 8.6 56.32 𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 3) 62.8 19.6 4.8 17.5 54.6
𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 6) 58.9 21.2 4.7 4.1 64.72 𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 6) 80.0 27.2 4.8 17.6 66.4
𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 9) 67.1 22.8 4.7 2.2 62.79 𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 9) 84.6 28.9 4.8 15.6 66.8
𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 12) 72.3 25.0 4.7 0.9 55.22 𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 12) 87.2 30.6 4.8 13.5 64.5
𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 2) 29.1 11.4 4.7 13.9 52.99 𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 2) 45.7 13.6 4.8 19.0 49.1
𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 4) 57.5 20.1 4.7 8.6 66.29 𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 4) 74.3 23.6 4.8 19.5 63.5
𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 6) 66.1 22.4 4.7 5.7 69.66 𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 6) 79.3 26.1 4.8 19.2 68.1
𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 8) 71.4 23.9 4.7 4.2 70.21 𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 8) 81.8 27.0 4.8 18.3 69.7

permutation 54.4 16.3 4.7 33.6 97.68 permutation 65.8 18.8 4.8 38.9 91.6
bootstrap 30.3 10.3 3.6 29.7 95.78 bootstrap 56.0 16.5 4.4 36.9 90.2

Summarizing these results, the easily applied two-sample 𝑡-statistic based approach to inference on
equality of, and on the difference between, inequality in two populations appears to be very useful, and
can complement the computationally expensive bootstrap and permutation-based inference methods.
Finite-sample properties of the 𝑡−statistic based approach appear to be better in the case of the Gini
index as compared to the Theil index as the former is more robust to heavy tails.

As discussed in Section 2.3, the simplest way to choose the number of groups in the case of
population distributions that are not very different from each other is to have 𝑞𝐼/𝑞𝑌 (approximately)
equal to 𝑁𝐼/𝑁𝑌 so that the sizes of all the groups considered are about the same. If the two population
distributions have similar tail indices, then in the case of inference on Gini measures, 𝑞𝐼 and 𝑞𝑌 may
be taken to be equal. In general, the size of the groups in the sample from a more heavy-tailed
distribution should be larger than the size of the groups from a less heavy-tailed distribution. Thus
in the case of equally sized samples, one should take the number of groups in the more heavy-tailed
sample to be less than the number of groups in the less heavy-tailed sample.
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Table 11: Size-adjusted power, 𝜁𝐼 = 2.2, different sample sizes, 𝑁𝐼 = 800, 𝑁𝑌 = 200

Theil \𝜁𝑌 1.4 1.8 2.2 3 7.4 Gini \𝜁𝑌 1.4 1.8 2.2 3 4.4
asymptotic 34.0 4.8 4.9 35.8 93.74 asymptotic 65.1 11.7 4.8 40.8 91.4
𝑡ℒ(𝑞 = 4) 11.2 2.6 4.9 28.3 87.08 𝑡ℒ(𝑞 = 4) 35.4 7.1 4.8 32.2 81.6
𝑡ℒ(𝑞 = 8) 7.3 1.1 4.9 33.8 92.78 𝑡ℒ(𝑞 = 8) 41.1 6.2 4.8 40.3 90.1
𝑡ℒ(𝑞 = 12) 3.2 0.6 4.9 34.5 94.11 𝑡ℒ(𝑞 = 12) 37.0 4.4 4.8 42.4 91.0
𝑡ℒ(𝑞 = 16) 1.2 0.5 4.9 35.3 94.63 𝑡ℒ(𝑞 = 16) 30.6 2.8 4.8 41.1 90.1

𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 3) 14.9 4.1 4.9 26.7 85.5 𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 3) 35.2 8.6 4.8 29.8 76.5
𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 6) 11.3 1.8 4.9 33.4 93.34 𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 6) 43.2 7.5 4.8 38.3 88.6
𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 9) 8.4 1.0 4.9 35.7 95.69 𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 9) 45.6 6.4 4.8 41.9 91.2
𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 12) 4.3 0.6 4.9 36.2 96.56 𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 12) 40.3 5.1 4.8 41.4 90.9
𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 2) 20.6 7.4 4.9 20.0 77.76 𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 2) 32.6 9.9 4.8 21.2 60.0
𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 4) 17.3 3.9 4.9 33.5 94.34 𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 4) 42.7 9.3 4.8 35.1 85.7
𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 6) 15.3 2.4 4.9 35.9 96.79 𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 6) 47.6 8.7 4.8 38.5 89.2
𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 8) 13.5 1.8 4.9 37.4 97.96 𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 8) 49.1 8.1 4.8 40.1 90.6

permutation 53.5 17.2 4.9 27.4 99.34 permutation 73.7 22.5 4.8 30.5 86.8
bootstrap 53.4 16.2 4.0 20.7 90.28 bootstrap 73.6 21.5 4.4 28.9 84.5

4 Empirical application: Income inequality across Russian
regions

This section presents empirical results on inequality measured using the Gini coefficient, comparing
Moscow with Russian regions, using the asymptotic, permutation, bootstrap and the 𝑡−statistic based
robust inference approaches. This analysis is based on a large database compiled from household in-
come surveys conducted by the Federal State Statistics Service of Russia (Rosstat) in 2017 (available at
https://www.gks.ru/free_doc/new_site/vndn-2017/index.html; https://www.gks.ru/free_
doc/new_site/vndn-2017/OHousehold.html). The database covers 160,000 households in Russian
regions, and provides data on households’ total income, among many other variables. Inference on
income inequality presented in this section is based on the incomes of Russian households, normalized
following Rosstat’s methodology, by the total number of household members (i.e., the total household
incomes per household member).

Table A.1 in the appendix provides the 𝑝−values for tests of the null hypothesis 𝐻0 : 𝐺𝑀 = 𝐺𝑅

against the alternative 𝐻𝑎 : 𝐺𝑀 ̸= 𝐺𝑅, where 𝐺𝑀 is the Gini coefficient in Moscow and 𝐺𝑅 is the
Gini coefficient in Russian region 𝑅. The entries in the table in bold are the 𝑝−values not greater
than 0.05.

The table also reports the values of the Gini coefficients and the tail indices 𝜁 of the income
distributions in the regions estimated using (bias-corrected) log-log rank-size regression (with 5% tail
truncation; see Gabaix and Ibragimov, 2011). In addition, the values of the ratio 𝑁𝐼/𝑁𝑌 , where 𝑁𝐼 ,

𝑁𝑌 denote the number of households surveyed in Moscow and the regions considered is also reported.
It should be noted that if 𝑞𝐼 or 𝑞𝑌 > 14 for the number of groups in the samples for Moscow and the
regions dealt with, we can use only the significance level less than 0.083 for the 𝑡−statistic approach
to robust inference.

23

https://www.gks.ru/free_doc/new_site/vndn-2017/index.html
https://www.gks.ru/free_doc/new_site/vndn-2017/OHousehold.html
https://www.gks.ru/free_doc/new_site/vndn-2017/OHousehold.html


The estimated Gini coefficients range from 0.236 (Tambov Region) to 0.354 (the Republic of
Ingushetia) indicating low to moderate inequality; Among the republics, Tyva Republic has the Gini
coefficient of 0.423 indicating high inequality. The value of the Gini coefficient for Moscow is 0.264
indicating rather low inequality.

The point estimates 𝜁 of tail indices of income distribution from log-log rank-size regressions lie
in the interval (3, 6) for most of Russian regions, with the exception of Karachay-Cherkess (𝜁 = 2.08)
and Mari El (𝜁 = 2.29) Republics, and Krasnodar (𝜁 = 2.6), Kursk (𝜁 = 2.75) and Tyumen (𝜁 = 2.71)
regions. The confidence intervals for tail indices of income distribution in most Russian regions lie
to the right of 2 implying finite second moments and finite variances. The 95% confidence intervals
for tail indices of income distributions in 33 regions,24 and 13 republics25 as well as 3 Autonomous
Districts26 intersect the interval (1.5, 3) which is where tail indices of income distribution in developed
countries typically lie.

The 95% confidence intervals for tail indices of income distributions in 18 regions including
Moscow27, and 6 republics28 as well as 3 Autonomous Districts29 lie to the right of 3 thus imply-
ing finite third moments and variances. The tail index estimate for Moscow was 3.96 with the 95%
confidence interval (3.44, 4.48).

On the basis of all the tests, including the 𝑡−statistic based tests with a variety of values for
𝑞𝐼 , 𝑞𝑌 , the null hypothesis 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected in favor of the alternative 𝐻𝑎 : 𝐺𝑀 > 𝐺𝑅 (at
the level 2.5%) for the Republic of Tatarstan, Sevastopol City and Bryansk, Kostroma, Tambov and
Tula regions. For Penza, Smolensk and Ulyanovsk regions and Udmurtia, 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected
in favor of 𝐻𝑎 : 𝐺𝑀 > 𝐺𝑅 on the base of the asymptotic, bootstrap, permutation and the 𝑡−statistic
based tests with some of the values 𝑞𝐼 , 𝑞𝑌 in the table.

Further, according to all the tests conducted including the 𝑡−statistic based robust tests for
most of the values 𝑞𝐼 , 𝑞𝑌 , the null hypothesis 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected in favor of the alternative
𝐻𝑎 : 𝐺𝑀 < 𝐺𝑅 (at the level 2.5%) for Amur, Chelyabinsk, Irkutsk, Khabarovsk, Krasnodar, Kras-
noyarsk, Kurgan, Moscow, Sakhalin and Jewish and Yamalo-Nenets Autonomous regions as well as
for the Republics of Bashkortostan, Buryatia, Dagestan, Ingushetia, Kalmykia, Khakassia and Sakha
(Yakutia); Altai, Chechen, Kabardino-Balkar, Karachay-Cherkess, Komi and Tyva Republics; Kam-
chatka, Primorskiy, Zabaykalsky Krays; Khanty-Mansi and Nenets Autonomous Okrugs and Chukotka
Autonomous District. For Astrakhan, Kaliningrad, Kemerovo, Novosibirsk, Omsk, Penza, Smolensk,
Sverdlovsk, Tomsk and Tyumen Regions, 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is rejected in favor of 𝐻𝑎 : 𝐺𝑀 < 𝐺𝑅 on the
base of the asymptotic, bootstrap, permutation and the 𝑡−statistic tests for some of the values 𝑞𝐼 , 𝑞𝑌

24Krasnodar, Krasnoyarsk, Stavropol, Khabarovsk, Arkhangelsk, Astrakhan, Belgorod, Vladimir, Volgograd,
Vologda, Voronezh, Ivanovo, Tver, Kemerovo, Kurgan, Kursk, Lipetsk, Magadan, Murmansk, Novosibirsk, Omsk,
Oryol, Penza, Pskov, Ryazan, Sakhalin, Sverdlovsk, Smolensk, Tambov, Tomsk, Tyumen, Ulyanovsk and Yaroslav

25Altai, Buryatia, Ingushetia, Kabardino-Balkar, Kalmykia, Karachay-Cherkess, Karelia, Komi, Mari El, Mordovia,
North Osetia, Tyva and Sakha

26Chukotka, Khanty-Mansi and Nenets and Kamchatka Kray
27Amur, Bryansk, Chelyabinsk, Irkutsk, Kaliningrad, Kaluga, Kirov, Kostroma, Leningrad, Nizhny Novgorod, Nov-

gorod, Orenburg, Perm, Rostov, Samara, Saratov, Sevastopol and Tula
28Adygeya, Bashkortostan, Chuvash, Dagestan, Khakassia and Tatarstan Republics
29Kamchatka, Primorsky and Zabaykalsky Krays
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in the table.
Two interesting conclusions follow.
First, income inequality appears to be higher in most Russian Regions compared to Moscow.
Second, the conclusions of all the approaches - the asymptotic, bootstrap, permutation, and the

𝑡−statistic based robust tests - to testing equality of the Gini coefficients 𝐺𝑀 and 𝐺𝑅 agree among
themselves. Two exceptions are Belgorod and Novgorod Regions, where 𝐻0 : 𝐺𝑀 = 𝐺𝑅 is not rejected
in favor of 𝐻𝑎 : 𝐺𝑀 < 𝐺𝑅 on the base of the asymptotic, bootstrap, permutation, but is rejected on
the base of the 𝑡−statistic based tests for some values of 𝑞𝐼 , 𝑞𝑌 .

5 Conclusion and suggestions for further research

The 𝑡−statistic based robust approach to inference on inequality in two populations are compu-
tationally undemanding and has a wide range of applicability in econometric and statistical analysis
under the problems of heterogeneity, dependence, and heavy-tailedness in observations. The approach
does not require the estimation of limiting variances of estimators of interest, in contrast to inference
methods based on consistent, e.g., HAC or clustered, standard errors that often have poor finite sample
properties, especially under pronounced heterogeneity and dependence in observations. In addition,
this inference approach can be used even in the presence of extremes and outliers in observations
generated by heavy-tailedness with infinite variances, as also in settings where observations (e.g.,
on income or wealth) in each of the samples are dependent among themselves - for instance, due to
spatial or clustered dependence, common shocks, or, in the case of time series or panel data on income
or wealth levels, due to autocorrelation and dependence in observations over time. Further, when the
two samples contain possibly dependent observations, the 𝑡−statistic inference approach may be used
under arbitrary dependence between the samples as well as under possibly unequal sample sizes.

As discussed in this paper and in previous works on the 𝑡-statistic based robust inference approach
and its applications, including Ibragimov and Müller (2010, 2016), and Section 3 in Ibragimov et al.
(2015), the choice of the number of groups 𝑞 is crucial for robustness. The numerical analysis of
finite-sample performance presented here and in earlier studies provides guidance on selecting the
number of groups under various distributional, heavy-tailedness, heterogeneity, and dependence set-
tings. However, as highlighted in the aforementioned works and in Section 2.3, asymptotic efficiency
results do not admit the use of data-dependent methods to determine the optimal number of groups 𝑞
when the only assumptions are asymptotic normality and asymptotic independence of group estima-
tors. Whether additional assumptions, such as on the degree of heavy-tailedness in the populations,
enable derivation of data-driven optimal values for the number of groups used in robust 𝑡-statistic
based inference is an interesting and important research question.

Future research should also explore different potential approaches to the formation groups in
applications of the 𝑡-statistic based robust inference. This may include random splits and all possible
splits along with inference procedures based on metrics such as the median, average, or quantiles of the
𝑡-statistics calculated from the corresponding group estimates. We thank an anonymous referee for this
suggestion. Dagayev and Stoyan (2020) recently considered random sample splits in their empirical
application, constructing 𝑡-statistics for group estimates of the parameters under analysis and basing
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the inference on quantiles, including the median and others, from the empirical distribution of the
obtained 𝑡-statistics values for the splits considered. Investigating the finite sample and asymptotic
properties of such inference procedures is an important area for further research.

The recent paper by Midões and de Crombrugghe (2023) citing our work presents extensive nu-
merical results on the finite sample performance of the two-sample 𝑡−statistic-based robust inference
approach in (2) with equal numbers of groups: 𝑞𝐼 = 𝑞𝑌 for selected inequality indices. Their study
complements the analysis presented in this paper. Among other directions, the future research may
focus on further analysis of finite sample performance, in the case of different dependence structures,
of the robust inference approach using one-sample 𝑡−statistic (3) in differences of group estimates
that provides a theoretically justified valid inference under arbitrary dependence between the samples.

In addition to inference on inequality indices that is the focus of this work, the 𝑡−statistic based
robust inference approach may also be applied for inference on poverty and concentration indices
where, as is well-known, the presence of extreme values, outliers, heavy-tailedness, and heterogeneity
make the application of asymptotic methods problematic (see, among others, Appendix B.1 in Section
E7 in Mandelbrot, 1997, Davidson and Flachaire, 2007, and Section 3.3.2 in Ibragimov et al., 2015).
The method can also be used for inference on tail indices in power laws (1) and corresponding measures
of top income or wealth inequality (see the discussion in the introduction, Section 3 and references
therein). These and other applications of the 𝑡−statistic robust inference approach and its extensions
are currently under development.
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Appendix B: Inequality measures and their sample analogues.
Normal and heavy-tailed stable asymptotics.

In this section, we review the definitions of the widely used Gini and Theil inequality measures, sample analogues
of the measures and their asymptotic properties (see, among others, Sections 2.1.3 and 2.1.4 in Kleiber and Kotz, 2003,
Cowell and Flachaire, 2007, Davidson and Flachaire, 2007, Section 13.F, 17.C in Marshall et al., 2011, and references
therein).

Let 𝐼 be an (absolutely continuous) nonnegative r.v. (e.g., income or wealth level) with the finite first moment
𝜇𝐼 = 𝐸[𝐼] < ∞ and the cdf 𝐹𝐼(𝑥) representing income or wealth distribution in a population, and let 𝐼1, 𝐼2, ..., 𝐼𝑁

denote a sample of observations on the r.v. 𝐼.
As usual, we denote by 𝐼𝑁 = 𝑁−1

∑︀𝑁
𝑖=1 𝐼𝑖 and 𝑠2𝑁 = (𝑁−1)−1

∑︀𝑁
𝑖=1(𝐼𝑖−𝐼)2 the sample mean and sample variance

of the observations 𝐼𝑖.

Below, we provide the definitions of Theil and Gini inequality measures (denoted by ℒ𝐼
𝑇ℎ𝑒𝑖𝑙 and ℒ𝐼

𝐺𝑖𝑛𝑖 for the
population considered) and discuss the standard results on their asymptotic normality.

Theil index The population Theil index is defined by

ℒ𝐼
𝑇ℎ𝑒𝑖𝑙 =

𝐸[𝐼 log 𝐼]

𝜇𝐼
− log(𝜇𝐼).

The Theil index is the limiting case of the Generalized Entropy measures. Its sample analogue - sample Theil index
- is given by

ℒ̂𝐼
𝑇ℎ𝑒𝑖𝑙,𝑁 =

1
𝑁

∑︀𝑁
𝑖=1 𝐼𝑖 log(𝐼𝑖)

𝐼𝑁
− log(𝐼𝑁 ).

Under i.i.d. observations 𝐼1, 𝐼2, ..., 𝐼𝑁 , the Theil index is asymptotically normal if 𝐸[𝐼2] < ∞, 𝐸[𝐼2 log 𝐼] < ∞ and
𝐸[𝐼2 log2(𝐼)] < ∞. It is easy to see that these conditions are satisfied in the case of r.v.’s with power law distributions
(1) (e.g., S-M distributions 𝑆𝑀(𝑎, 𝑏, 𝑐) in (4) with 𝜁 = 𝑎𝑐) if the tail index 𝜁 is greater than 2: 𝜁 > 2.

Under the above conditions, one has

√
𝑁(ℒ̂𝐼

𝑇ℎ𝑒𝑖𝑙,𝑁 − ℒ𝐼
𝑇ℎ𝑒𝑖𝑙) →𝑤 𝑁(0, 𝑣2𝑇ℎ𝑒𝑖𝑙,𝐼),

where

𝑣2𝑇ℎ𝑒𝑖𝑙,𝐼 =
𝐸[𝐼2 log2 𝐼]

𝜇2
𝐼

+
𝐸[𝐼2]

𝜇2
𝐼

(︁𝐸[𝐼 log 𝐼]

𝜇𝐼
+ 1

)︁2

− 2𝐸[𝐼2 log 𝐼]

𝜇2
𝐼

(︁𝐸[𝐼 log 𝐼]

𝜇𝐼
+ 1

)︁
− 1

(see, among others, Mills and Zandvakili (1997), Cowell (1989, 2000), Cowell and Flachaire (2007) and Mergane et al.
(2018) for the review of the results on asymptotic normality and the formulas for the liming and sampling variance of
different estimators of inequality measures).

Gini coefficient The population Gini coefficient is defined by

ℒ𝐼
𝐺𝑖𝑛𝑖 = 0.5

𝐸|𝐼 ′ − 𝐼 ′′|
𝜇𝐼

,

where 𝐼 ′ and 𝐼 ′′ are independent copies of the r.v. 𝐼.
The most commonly used (nonparametric) estimator of the Gini coefficient ℒ𝐼

𝐺𝑖𝑛𝑖 is given by its sample analogue
(the sample Gini coefficient)

ℒ̂𝐼
𝐺𝑖𝑛𝑖,𝑁 =

∑︀
1≤𝑖<𝑗≤𝑁 |𝐼𝑖 − 𝐼𝑗 |
(𝑁 − 1)

∑︀𝑁
𝑖=1 𝐼𝑖

= 𝑈𝑁/𝐼𝑁 ,

where 𝑈𝑁 is the 𝑈−statistic 𝑈𝑁 = 2
𝑁(𝑁−1)

∑︀
1≤𝑖<𝑗≤𝑁 |𝐼𝑖 − 𝐼𝑗 | (we refer to, among others, Hoeffding (1948), Ch. 5 in

Serfling (1980) and Ch. 4 in Koroljuk and Borovskich (1994) for the asymptotic theory for general 𝑈−statistics).
From the results in the above references, it follows that asymptotic normality for the 𝑈−statistic 𝑈𝑁 and the

sample Gini coefficient holds if 𝐼1, 𝐼2, ..., 𝐼𝑁 are i.i.d. observations with finite second moment 𝐸[𝐼2] < ∞. This holds

7



under power-law distributions (1) (e.g., for S-M distributions 𝑆𝑀(𝑎, 𝑏, 𝑐) in (4) with 𝜁 = 𝑎𝑐) if the tail index 𝜁 is
greater than 2: 𝜁 > 2. More precisely, under the above conditions (see Hoeffding (1948))

√
𝑁(ℒ̂𝐼

𝐺𝑖𝑛𝑖,𝑁 − ℒ𝐼
𝐺𝑖𝑛𝑖) →𝑤 𝑁(0, 𝑣2𝐺𝑖𝑛𝑖,𝐼),

where 𝑣2𝐺𝑖𝑛𝑖,𝐼 = (ℒ𝐼
𝐺𝑖𝑛𝑖)

2𝜎2
𝐼 − 2ℒ𝐼

𝐺𝑖𝑛𝑖𝐸{𝐼 ′|𝐼 ′ − 𝐼 ′′|}/𝜇2
𝐼 + 𝐸(𝐸𝐼′{|𝐼 ′ − 𝐼 ′′|})/𝜇2

𝐼 , and 𝐸𝐼′(·) = 𝐸𝐼′(·) = 𝐸{·|𝐼 ′} denotes
the expectation conditional on 𝐼 ′.

Naturally, the asymptotic normality of the sample Theil and Gini coefficients is lost under infinite second moments
and variances: 𝐸[𝐼2] = ∞. For instance, from the results in Fontanari et al. (2018) it follows that under i.i.d. observations
𝐼1, 𝐼2, ..., 𝐼𝑁 that follow a power-law distribution (1) with the tail index 𝜁 ∈ (1, 2) (e.g., the S-M distribution 𝑆𝑀(𝑎, 𝑏, 𝑐)

in (4) with 1 < 𝜁 = 𝑎𝑐 < 2) and have finite first and infinite second moments, the sample Gini coefficient ℒ̂𝐺𝑖𝑛𝑖,𝑁

has an asymptotic right-skewed stable distribution with the index of stability 𝜁. Using the standard generalized CLT
and the delta-method, it is also not difficult to show that in the case of distributions exhibiting (double) power law
behavior in both the lower and the upper (with the tail index 𝜁), similar to S-M distributions 𝑆𝑀(𝑎, 𝑏, 𝑐) with 𝜁 = 𝑎𝑐,

the sample Theil index ℒ̂𝑇ℎ𝑒𝑖𝑙,𝑁 weakly converges to a function of stable r.v.’s with indices of stability that depend on
𝜁. The rate of convergence in the above asymptotic results is slower than

√
𝑁 and depends on 𝜁. The fact that the tail

index 𝜁 is unknown in practice makes the results useless for (direct) asymptotic inference.30

On the other hand, from the above results it also follows that, for the two-sample problem of 𝑡−statistic inference
in Section 2.2, in the case of identical distributions in the populations considered and the equal number of groups
𝑞𝐼 = 𝑞𝑌 = 𝑞, as in Table C.3, the differences of group estimators of Theil and Gini indices in the two-samples are
asymptotically symmetric stable and thus asymptotically scale mixtures of normals. As the 𝑡−statistic approach to
robust inference in Ibragimov and Müller (2010, 2016) are asymptotically valid under weak convergence of group
estimators of parameters dealt with to scale mixtures of normal distributions, this explains favorable performance of
two-sample 𝑡−statistic approach in Table C.3 in Section 3.2.2.

30The situation is somewhat similar to the properties of autocorrelation functions of GARCH-type processes and their
squares, where asymptotic normality is lost under tail indices smaller than 4 and infinite fourth moments, as is typically
the case for financial returns and foreign exchange rates in real-world markets (see Davis and Mikosch (1998), Mikosch
and Stărică (2000) and also Ibragimov et al. (2020) for asymptotically valid robust 𝑡−statistic approach to inference
on measures of market (non-)efficiency and volatility clustering based on powers of absolute values of GARCH-type
processes, e.g., financial returns).
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Appendix C: Two-sample problem; the case of identical distributions.

In the appendix, we provide the results of the size of the tests considered in Section 3.2 in the case of identical
distributions.

Table C.1 presents results for identical distributions, and sample sizes 𝑁𝐼 = 𝑁𝑌 = 𝑁 = 200. The results suggest
that the sizes of all the tests, except the asymptotic, never exceed the nominal 5% level. In many cases, the sizes are
quite close to the nominal level for the permutation, bootstrap, and the 𝑡−statistic based robust tests.

Tables C.2 and C.3 present results for different sample sizes 𝑁𝐼 , 𝑁𝑌 and identical distributions. The finite-sample
sizes of all the tests, except the asymptotic, appear to be good for all parameter settings. Essentially no over-rejections
are observed for 𝑡−statistic based robust inference, including in settings with more pronounced heavy-tailedness and
infinite variances (Table C.3). The finite-sample size properties of the simple-to-use 𝑡−statistic based robust tests based
on (2) with 𝑞 = 4, 8 in the case of more heavy-tailed distributions, and based on (3) with 𝑞 = 4, 8, 12, 16 in the case of
less heavy-tailed distributions, are comparable to those of the computationally expensive permutation and bootstrap
tests.

are comparable to those of the bootstrap and permutation approaches. Asymptotic normality of estimators of
Theil and Gini indices is lost under infinite variances, e.g., for tail indices 𝜁𝐼 = 𝜁𝑌 = 1.4 in Table C.3 (see Fontanari
et al. (2018) and the discussion in Appendix B). However, the 𝑡−statistic based approach has good finite sample size
properties even in such heavy-tailed settings. This is due to the robustness of the approach to heavy-tailedness – they
may be used under convergence of group estimators to scale mixtures of normals such as symmetric stable distributions.
Symmetric stable asymptotics holds for differences of group estimators in the case of identical heavy-tailed power law
distributions (1) with 𝜁 < 2 and infinite second moments in the populations, and equal number of groups, such as is
used in 𝑡−statistic inference in the two-sample problem (Table C.3, see Appendix B).

Table C.4 is an analogue of Tables C.2 and C.3 with different numbers of groups used in two-sample 𝑡−statistic
based robust inference approach. In the case of the Theil index, only the choice of 𝑞𝐼 = 𝑞𝑌 = 4 leads to size control for
all sample sizes. Size distortion is apparently due to skewness in finite-sample distributions of (group) Theil inequality
estimates implying poor quality of normal approximations (see Section 3.1 and also the discussion in Appendix D).
The solution is to use different numbers of groups 𝑞𝐼 , 𝑞𝑌 for different sample size pairs 𝑁𝐼 , 𝑁𝑌 . Good size properties are
observed with (𝑞𝐼 , 𝑞𝑌 ) = (8, 8) for 𝑁𝐼 = 200, 𝑁𝑌 = 400, (𝑞𝐼 , 𝑞𝑌 ) = (6, 8) for 𝑁𝐼 = 200, 𝑁𝑌 = 600 and (𝑞𝐼 , 𝑞𝑌 ) = (6, 12)

for 𝑁𝐼 = 200, 𝑁𝑌 = 800.
The finite-sample distributions of (group) empirical Gini estimates are not as skewed and are better approximated

by the normal when compared to the Theil estimates (see Appendix C). There is good size control for different
combinations of 𝑞𝐼 and 𝑞𝑌 in 𝑡−statistic based robust tests for Gini indices except for the cases 𝑞𝐼 = 𝑞𝑌 = 12,
𝑞𝐼 = 𝑞𝑌 = 16 and 𝑞𝐼 = 12, 𝑞𝑌 = 16 with rather small number of observations in each of the group. To avoid very
conservative size properties, the best choices for the number of groups in applications appear to be (𝑞𝐼 , 𝑞𝑌 ) = (8, 8),
(𝑞𝐼 , 𝑞𝑌 ) = (9, 12) and (𝑞𝐼 , 𝑞𝑌 ) = (8, 16) for all sample sizes 𝑁𝐼 , 𝑁𝑌 considered.
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Table C.1: Empirical size – identical sample sizes, identical distributions

Theil \𝜁 6.26 3.94 2.9 2.2 1.4 Gini\𝜁 6.6 3.8 2.59 2.2 1.4
asymptotic 5.4 5.5 5.3 7.6 22.1 asy 5.7 6.1 7.0 8.4 18.8
𝑡ℒ(𝑞 = 4) 2.0 1.7 1.5 1.5 1.3 𝑡ℒ(𝑞 = 4) 2.1 1.9 1.9 2.0 2.0
𝑡ℒ(𝑞 = 8) 3.2 2.7 2.2 2.4 2.4 𝑡ℒ(𝑞 = 8) 3.5 3.4 3.0 3.2 3.4
𝑡ℒ(𝑞 = 12) 3.6 3.2 2.7 2.9 3.0 𝑡ℒ(𝑞 = 12) 3.8 3.7 3.4 3.7 3.7
𝑡ℒ(𝑞 = 16) 4.0 3.7 3.1 3.4 3.5 𝑡ℒ(𝑞 = 16) 4.4 4.2 4.1 4.0 4.1
˜̃𝑡ℒ(𝑞 = 4) 4.6 4.4 3.5 3.5 2.9 ˜̃𝑡ℒ(𝑞 = 4) 5.0 4.9 4.4 4.6 4.6
˜̃𝑡ℒ(𝑞 = 8) 4.7 4.1 3.3 3.7 3.7 ˜̃𝑡ℒ(𝑞 = 8) 4.9 4.8 4.5 4.9 4.9
˜̃𝑡ℒ(𝑞 = 12) 4.9 4.3 3.5 3.8 4.1 ˜̃𝑡ℒ(𝑞 = 12) 5.1 4.9 4.6 4.8 4.9
˜̃𝑡ℒ(𝑞 = 16) 5.0 4.5 3.8 4.1 4.3 ˜̃𝑡ℒ(𝑞 = 16) 5.3 5.1 4.7 4.8 5.0

permutation 4.8 4.7 4.9 4.7 4.7 permutation 4.4 4.5 4.8 4.8 4.5
bootstrap 4.5 4.2 3.4 3.3 2.8 bootstrap 4.8 4.4 4.1 3.9 3.9

Notes: parameter values (𝑎, 𝑐) as in Dufour et al. (2019). 𝑁𝐼 = 𝑁𝑌 = 200, 𝜁𝐼 = 𝜁𝑌 = 𝜁.

Theil index: (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2.5, 2.502), (3.2, 1.232), (5.8, 0.4996).

Gini coefficient: (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2.5, 2.64), (3.2, 1.1866), (5.8, 0.447).

Table C.2: Empirical size – identical distributions, different sample sizes

Theil, 𝜁 = 2.9 \𝑁𝑌 50 200 500 1000 5000 Gini, 𝜁 = 2.59\𝑁𝑌 50 200 500 1000 5000
asymptotic 8.7 5.3 4.7 4.6 4.5 asymptotic 12.3 6.6 5.7 5.4 5.2
𝑡ℒ(𝑞 = 4) 1.2 1.2 1.6 1.5 1.6 𝑡ℒ(𝑞 = 4) 1.5 1.5 1.8 1.8 1.7
𝑡ℒ(𝑞 = 8) 2.2 2.0 2.4 2.4 2.5 𝑡ℒ(𝑞 = 8) 3.1 2.7 3.2 3.1 3.4
𝑡ℒ(𝑞 = 12) 2.7 2.4 2.9 2.8 3.0 𝑡ℒ(𝑞 = 12) 3.6 3.4 3.5 3.6 4.0
𝑡ℒ(𝑞 = 16) 3.5 2.8 3.2 3.3 3.4 𝑡ℒ(𝑞 = 16) 4.3 3.7 3.6 3.9 4.2
˜̃𝑡ℒ(𝑞 = 4) 2.9 3.1 3.7 3.7 3.7 ˜̃𝑡ℒ(𝑞 = 4) 4.3 4.4 4.8 4.7 4.8
˜̃𝑡ℒ(𝑞 = 8) 3.6 3.2 3.9 3.7 4.0 ˜̃𝑡ℒ(𝑞 = 8) 4.5 4.4 4.8 4.7 4.6
˜̃𝑡ℒ(𝑞 = 12) 3.8 3.7 3.8 3.7 4.4 ˜̃𝑡ℒ(𝑞 = 12) 4.9 4.6 4.7 4.9 5.1
˜̃𝑡ℒ(𝑞 = 16) 4.5 3.5 3.8 3.9 4.0 ˜̃𝑡ℒ(𝑞 = 16) 5.2 4.6 4.7 4.7 4.8

permutation 5.0 4.8 4.9 4.9 5.0 permutation 5.1 4.9 5.0 4.9 5.2
bootstrap 4.0 4.2 4.1 4.5 4.7 bootstrap 4.6 4.8 4.8 5.1 5.3

Notes:𝑁𝐼 = 200.

Theil index: (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (5.8, 0.4996).

Gini coefficient: (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (5.8, 0.447).

Appendix D: One-sample problem.

For illustrative properties, this appendix discusses 𝑡−statistic inference approach and its implementation in the
one-sample case. In the context of one-sample inference on income or wealth inequality measured using an inequality
index ℒ (e.g., Theil index or Gini coefficient, among others) the 𝑡−statistic based inference is conducted in the following
simple way (see also Ibragimov et al., 2013).

Following Ibragimov and Müller (2010), a (large) sample, I 1, I 2,..., I𝑁 , of observations on income (or wealth) 𝐼,

is partitioned into a fixed number 𝑞 ≥ 2 (e.g., 𝑞 = 2, 4, 8) groups, and the inequality index ℒ is estimated for each
group; resulting in 𝑞 group level income inequality estimates ̂︀ℒ𝑗 , 𝑗 = 1, ..., 𝑞. The robust test of the null hypothesis
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Table C.3: Empirical size – identical distributions, different sample sizes

Theil\𝑁𝑌 50 200 500 1000 5000 Gini \𝑁𝑌 50 200 500 1000 5000
asymptotic 31.5 21.9 16.7 13.8 8.7 asymptotic 28.9 18.3 14.0 12.3 8.6
𝑡ℒ(𝑞 = 4) 1.0 1.1 1.3 1.1 1.1 𝑡ℒ(𝑞 = 4) 1.7 1.7 1.9 1.6 1.6
𝑡ℒ(𝑞 = 8) 2.5 2.2 2.3 2.1 2.0 𝑡ℒ(𝑞 = 8) 3.3 3.0 3.1 3.2 2.7
𝑡ℒ(𝑞 = 12) 3.5 3.0 3.1 2.9 2.7 𝑡ℒ(𝑞 = 12) 3.8 3.5 3.8 3.7 3.5
𝑡ℒ(𝑞 = 16) 4.0 3.3 3.3 3.5 3.0 𝑡ℒ(𝑞 = 16) 4.3 3.8 4.1 4.0 4.0
˜̃𝑡ℒ(𝑞 = 4) 3.0 3.0 3.1 2.8 2.7 ˜̃𝑡ℒ(𝑞 = 4) 4.7 4.5 4.5 4.3 3.9
˜̃𝑡ℒ(𝑞 = 8) 4.0 3.5 3.6 3.5 3.2 ˜̃𝑡ℒ(𝑞 = 8) 5.2 4.8 4.9 4.7 4.3
˜̃𝑡ℒ(𝑞 = 12) 4.7 4.1 3.9 3.8 3.7 ˜̃𝑡ℒ(𝑞 = 12) 5.1 5.0 4.9 4.9 4.8
˜̃𝑡ℒ(𝑞 = 16) 5.2 4.2 4.1 4.2 3.7 ˜̃𝑡ℒ(𝑞 = 16) 5.4 4.9 4.7 5.0 4.6

permutation 4.9 4.8 5.1 5.1 4.9 permutation 5.1 4.7 4.9 5.0 5.0
bootstrap 3.3 3.4 3.6 3.6 3.6 bootstrap 4.5 4.2 4.3 4.4 4.1

Notes: 𝑁𝐼 = 200, 𝜁𝐼 = 𝜁𝑌 = 1.4.

Theil and Gini coefficient: (𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2, 0.7).

Table C.4: Empirical size – identical distributions, different sample sizes, different numbers of groups

Theil \𝑁𝑌 400 600 800 Gini\𝑁𝑌 400 600 800
asymptotic 8.8 9.3 11.4 asymptotic 8.8 8.1 9.1

𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 4) 1.9 2.3 3.2 𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 4) 2.2 2.1 2.7
𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 8) 4.2 6.3 8.6 𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 8) 3.9 4.3 5.1

𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 12) 6.8 11.1 15.1 𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 12) 5.1 5.7 6.8
𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 16) 9.4 15.9 21.6 𝑡ℒ(𝑞𝐼 = 16, 𝑞𝑌 = 16) 5.8 6.6 8.7
𝑡ℒ(𝑞𝐼 = 3, 𝑞𝑌 = 4) 0.7 0.7 1.1 𝑡ℒ(𝑞𝐼 = 3, 𝑞𝑌 = 4) 0.8 1.0 1.3
𝑡ℒ(𝑞𝐼 = 6, 𝑞𝑌 = 8) 2.5 3.6 5.5 𝑡ℒ(𝑞𝐼 = 6, 𝑞𝑌 = 8) 2.8 3.1 3.8
𝑡ℒ(𝑞𝐼 = 9, 𝑞𝑌 = 12) 4.1 6.3 9.4 𝑡ℒ(𝑞𝐼 = 9, 𝑞𝑌 = 12) 3.9 4.1 5.0
𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 16) 6.0 9.5 14.0 𝑡ℒ(𝑞𝐼 = 12, 𝑞𝑌 = 16) 4.8 5.1 6.4
𝑡ℒ(𝑞𝐼 = 2, 𝑞𝑌 = 4) 0.1 0.1 0.1 𝑡ℒ(𝑞𝐼 = 2, 𝑞𝑌 = 4) 0.0 0.1 0.1
𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 8) 1.1 1.1 1.9 𝑡ℒ(𝑞𝐼 = 4, 𝑞𝑌 = 8) 1.4 1.5 2.0
𝑡ℒ(𝑞𝐼 = 6, 𝑞𝑌 = 12) 2.1 2.9 4.6 𝑡ℒ(𝑞𝐼 = 6, 𝑞𝑌 = 12) 2.6 2.8 3.4
𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 168) 3.1 4.5 6.9 𝑡ℒ(𝑞𝐼 = 8, 𝑞𝑌 = 16) 3.4 3.6 4.5

permutation 5.4 4.9 4.9 permutation 5.4 4.7 4.8
bootstrap 4.6 3.7 4.0 bootstrap 5.3 4.4 4.4

Notes: 𝑁𝐼 = 200, 𝑁𝑌 = 400, 600, 800.

(𝑎𝐼 , 𝑐𝐼) = (𝑎𝑌 , 𝑐𝑌 ) = (2, 1.1); 𝜁𝐼 = 𝜁𝑌 = 2.2.

𝐻0 : ℒ = ℒ0 against the two-sided alternative 𝐻𝑎 : ℒ ≠ ℒ0 is based on the usual 𝑡−statistic 𝑡𝐼ℒ in the 𝑞 group level
inequality estimates ̂︀ℒ𝑗 , 𝑗 = 1, ..., 𝑞 :

𝑡ℒ =
√
𝑞
̂︀ℒ − ℒ0

𝑠 ̂︀ℒ (D.1)

with ̂︀ℒ =
∑︀𝑞

𝑗=1
̂︀ℒ𝑗

𝑞 and 𝑠2̂︀ℒ =

∑︀𝑞
𝑗=1

(︁ ̂︀ℒ𝑗− ̂︀ℒ)︁2

𝑞−1 . The null hypothesis is rejected in favor of the alternative at level 𝛼 ≤ 0.083
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(which includes the conventional significance level 𝛼 = 0.05) if the absolute value |𝑡ℒ| of the 𝑡−statistic in group
estimates ̂︀ℒ𝑗 exceeds the (1 − 𝛼/2)−quantile of the standard Student-𝑡 distribution with 𝑞 − 1 degrees of freedom:
|𝑡ℒ| > 𝑐𝑣𝑞,𝛼.

The test of 𝐻0 against 𝐻𝑎 at level 𝛼 ≤ 0.1 can be conducted in the same way if 2 ≤ 𝑞 ≤ 14. Using the results in
Bakirov and Székely (2006) and Ibragimov and Müller (2010), the 𝑝−values of the above 𝑡−statistic based tests can
be calculated in the case of an arbitrary number of groups 𝑞. This enables robust tests on inequality index ℒ at any
chosen level. One-sided tests are conducted in a similar way; note that quantiles of Student-𝑡 distributions with 𝑞 − 1

degrees of freedom can also be used in one-sided tests of level 𝛼 ≤ 0.1 if 𝑞 ∈ {2, 3}.
By implication, for all 𝛼 ≤ 0.083 (and all 𝛼 ≤ 0.1 for 2 ≤ 𝑞 ≤ 14) a confidence interval for the inequality index ℒ

with asymptotic coverage of at least 1−𝛼 may be constructed as ̂︀ℒ𝑗±𝑐𝑣𝑞,𝛼𝑠 ̂︀ℒ. For example, the 95% confidence interval

for ℒ is given by ( ̂︀ℒ− 𝑐𝑣𝑞,0.05𝑠 ̂︀ℒ, ̂︀ℒ+ 𝑐𝑣𝑞,0.05𝑠 ̂︀ℒ), where cv𝑞,0.05 is the 0.975-quantile of the Student-t distribution with
q−1 degrees of freedom: 𝑃 (|𝑇𝑞−1| > 𝑐𝑣𝑞,0.05)=0.05.31

From the results in Ibragimov and Müller (2010), the 𝑡−statistic inference approach results in asymptotically valid
inference under the assumption that the group level income inequality estimators ̂︀ℒ𝑗 , 𝑗 = 1, ..., 𝑞, are asymptotically
independent, unbiased and Gaussian, even if of different variances.

As discussed in Section 2.1, asymptotic validity of t-statistic based inference also holds under convergence of the
group estimators to conditionally normal r.v.s. The limiting r.v.’s may further be unconditionally dependent through
their second moments or have a common shock-type dependence. This implies that the approach can be applied to
inference on ℒ in the presence of extremes and outliers in observations generated by heavy-tailedness with infinite
variances, as well as dependence structures that include models with multiplicative common shocks. Importantly, The
inference approach does not require the estimation of limiting variances of estimators of interest, in contrast to inference
methods based on consistent (e.g., HAC or clustered) standard errors.

The conditions for asymptotic validity of the 𝑡−statistic based approach to robust inference are typically satisfied
in applications under the choice of groups that imply asymptotic unbiasedness and independence of group estimators of
the inequality indices (see below). The asymptotic Gaussianity (and other weak convergence results such as convergence
to heavy-tailed stable distributions under infinite second moments) of group inequality estimators ( ̂︀ℒ𝑗) follows from the
same reasoning and holds under the same conditions as the asymptotic Gaussianity (and other relevant asymptotics)
of the full-sample inequality estimator ( ̂︀ℒ). As discussed in Appendix B, asymptotic normality holds for estimators
of Theil and Gini indices in the case of power law income distributions (1) with tail indices 𝜁 > 2 and finite second
moments.

The condition that group estimators of inequality be asymptotically unbiased (and independent) places a natural
restriction on the formation of groups (see also discussion of general 𝑡−statistic inference approach in Ibragimov and
Müller, 2010). The grouping must be such that each group estimator is an unbiased estimate of inequality in the
population, such that the mean of the group estimators of inequality will asymptotically be equal to inequality in
the population. This requires the grouping to be such that there is no “between-group” inequality in expectation.
Thus, for example, for one-sample inference on inequality in a country, groups cannot be the country’s regions. This is
because in that case, the group estimators would measure within-region inequality, and their mean will miss out the
“between-region" component of inequality in the country as a whole.

The groups may be formed by simply partitioning the random sample. Given the random sample 𝐼1, 𝐼2, ..., 𝐼𝑁

of (i.i.d.) incomes that are not pre-grouped or ordered by regions or other markers, the 𝑞 groups may be formed
as {𝐼𝑘, (𝑖 − 1)𝑁/𝑞 < 𝑘 ≤ 𝑖𝑁/𝑞}, 𝑖 = 1, ..., 𝑞,. With this simple scheme of grouping, asymptotic unbiasedness and
independence of group inequality estimators will hold due to i.i.d.ness of data – there is no “between-groups” inequality
in expectation.

Table D.1 provides results on the empirical sizes of the asymptotic and the 𝑡−statistic based robust tests on
the Theil and Gini indices for sample sizes 𝑁 = 200, 500, 1000 drawn from the S-M distributions 𝑆𝑀(𝑎, 𝑏0, 𝑐) with,
in the case of the Theil index, the parameters (𝑎, 𝑐) = (2.5, 2.502), (3.2, 1.232), (5.8, 0.4996), correspond to the tail

31Thus the width of the confidence interval (and their two-sample analogues) depends on sample standard deviations
of group estimators. This is in contrast to confidence intervals constructed using consistent estimators of limiting
variances of sample inequality measures whose width depends on the consistent standard errors.
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indices 𝜁 = 6.6, 3.94, 2.9. In the case of the Gini coefficient, parameters (𝑎, 𝑐) = (2.5, 2.640), (3.2, 1.187), and (5.8, 0.447)

correspond to 𝜁 = 6.26, 3.8, 2.9.

Consistent with the finite-sample distributions of statistics 𝑍 and 𝑆 such as those in Figures 1-3, the results show
that the finite-sample sizes of both the asymptotic and 𝑡−statistic based tests become more distorted when the tail
index is smaller, i.e., when the degree of heavy-tailedness is more pronounced. Importantly, size distortions for the Gini
coefficient are not as large as for the Theil index which is more sensitive to the upper tail. One should note that the
empirical size of the 𝑡−statistic based approach is sensitive to the choice of the number of groups 𝑞. At the same time,
when the number of groups 𝑞 is 4 or 8, the finite-sample size properties of robust tests based on the 𝑡−statistic in group
estimates are generally better than those of the tests based on asymptotic normality of the (full-sample) 𝑡−statistics
for the measures; and when each of the groups contains more than 100 observations (with 𝑞 = 4), better than those of
the asymptotic tests.32

Table D.1: Empirical size: Identical distributions with 𝜁𝐼 = 𝜁𝑌 = 𝜁 and sample sizes 𝑁𝐼 = 𝑁𝑌 = 𝑁

Theil 𝜁 = 6.26 𝜁 = 3.94 𝜁 = 2.9 Gini 𝜁 = 6.6 𝜁 = 3.8 𝜁 = 2.59

𝑁 = 200

asymptotic 8.2 14.5 25.5 asymptotic 6.2 7.5 13.0
𝑞 =4 6.9 10.6 18.0 𝑞 = 4 5.2 5.2 7.7
𝑞 =8 11.0 17.8 28.7 𝑞 = 8 5.2 6.0 11.3
𝑞 =12 15.9 24.9 37.3 𝑞 = 12 5.5 6.6 14.2
𝑞 =16 21.3 33.1 45.9 𝑞 = 16 5.5 6.9 16.9

𝑁 = 500

asymptotic 6.9 11.9 20.2 asymptotic 5.7 6.5 10.8
𝑞 =4 5.8 8.2 13.5 𝑞 = 4 4.8 5.1 7.1
𝑞 =8 8.3 12.9 20.6 𝑞 = 8 5.3 5.9 9.5
𝑞 =12 10.0 16.2 25.6 𝑞 = 12 5.1 6.3 11.5
𝑞 =16 12.7 20.0 30.0 𝑞 = 16 5.1 6.4 13.0

𝑁 = 1000

asymptotic 6.0 9.6 17.0 asymptotic 5.2 5.7 8.6
𝑞 =4 5.3 6.5 10.5 𝑞 = 4 4.8 4.9 5.8
𝑞 =8 6.1 9.3 16.3 𝑞 = 8 4.9 5.1 7.4
𝑞 =12 7.4 11.8 19.5 𝑞 = 12 4.9 5.2 8.5
𝑞 =16 8.7 14.2 22.6 𝑞 = 16 5.0 5.4 10.1

32These conclusions on the number accord with the numerical results presented in Ibragimov and Müller (2010) that
indicate that, for many dependence and heterogeneity settings considered in the literature and typically encountered
in practice for time series, panel, clustered and spatially correlated data, the choice of the number of groups 𝑞 = 4, 8

or 𝑞 = 16 leads to robust tests with attractive finite sample performance. One should emphasize that the asymptotic
efficiency results for 𝑡−statistic based robust inference in Ibragimov and Müller (2010) imply that it is not possible to
use data-dependent methods to determine the optimal number of groups 𝑞 to be used in the approach when the only
assumption imposed on the data generating process is that of asymptotic normality and asymptotic independence of
group estimators of the parameter of interest.
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